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Abstract. We devise a model for security investment that reflects dy-
namic interaction between a defender, who faces uncertainty, and an
attacker, who repeatedly targets the weakest link. Using the model, we
derive and compare optimal security investment over multiple periods,
exploring the delicate balance between proactive and reactive security
investment. We show how the best strategy depends on the defender’s
knowledge about prospective attacks and the sunk costs incurred when
upgrading defenses reactively. Our model explains why security under-
investment is sometimes rational even when effective defenses are avail-
able and can be deployed independently of other parties’ choices. Finally,
we connect the model to real-world security problems by examining two
case studies where empirical data is available: computers compromised
for use in online crime and payment card security.

Keywords: Economics of Information Security, Security Investment,
Weakest Link, Uncertainty, Dynamic Model

1 Introduction

We hear about security breaches in the news almost daily, each bigger and more
costly than the last. Does this reflect flawed technology, policy, or simply inep-
titude? What if, instead, allowing some attacks to succeed is entirely rational?
Rather than over-invest proactively, companies could wait to observe which at-
tacks work and use this knowledge to better allocate security spending. In this
paper, we describe a model that weighs the merits of such an approach.

One key insight from the economics of information security literature [1] is
that attackers bent on undermining a system’s security operate strategically.
Moreover, information systems are often structured so that a system’s overall
security depends on its weakest link [2]. The most careless programmer in a
software firm can introduce a critical vulnerability. The Internet’s global, dis-
tributed architecture leads to security being dominated by the weakest link –
attackers compromise machines hosted at Internet service providers (ISPs) with
lax enforcement policies or located in uncooperative countries. Attackers have
repeatedly exhibited a knack for identifying the easiest way to bypass a system’s
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security, even when the system’s designer remains unaware of the particular
weakness.

However, systems do not exist in a vacuum; rather, defenders respond to
attacks by plugging known holes. And yet, as soon as one weakest link is fixed,
another weak point is often identified and exploited. Therefore, a strong dynamic
component is at play: attackers find the weakest link, defenders fix the problem,
attackers find new holes which are then plugged, and so on. We see this pattern
emerge repeatedly. For instance, attackers construct networks of compromised
machines (so-called botnets) to pester legitimate users by emitting spam, dis-
tributing malware and hosting phishing websites. Attackers concentrate their
efforts at the most irresponsible ISPs, moving on to others only after the ISP
cleans up its act or is shut down. Likewise, technical countermeasures to payment
card fraud have evolved over time, causing fraudsters to adopt new strategies
as old weaknesses are fixed. For example, when UK banks migrated to PIN ver-
ification of transactions rather than signatures, in-person retail fraud declined
while overseas ATM fraud and card-not-present fraud skyrocketed.

In this paper, we devise a model that reflects this dynamic interaction be-
tween attackers and defenders. Our model captures the iterative aspect of attack
and defense; we exclusively study the case where security depends on the weakest
link ; consequently, we model the iterated weakest link. Key characteristics of the
model include:

1. Defensive countermeasures can be represented as interdependent; thus, the
oft-cited diminishing marginal return of information security investment
(e. g., [3]) becomes endogenous in our model.

2. Defender uncertainty about which components are weakest is captured.
3. A repeated game setting reflects the iterative process of attacking and de-

fending successive weakest links.

We reach several interesting conclusions upon examining the model. By com-
paring the static case (a single round of attack and defense) to the dynamic one
(multiple rounds), we find different defender strategies may prevail. When the
defender only gets one chance to protect a system, increasing uncertainty about
which link is weakest causes the defender to protect more assets, but only up to a
point. When uncertainty is too high, the defender does not know which asset to
protect and so chooses to protect none. If instead we allow for repeated defensive
investments, an uncertain defender will initially protect fewer assets and wait for
the attacker to ‘identify’ the weakest links to be fixed in later rounds. Hence, it
can be quite rational to under-invest in security until threats are realized. Unlike
in other theories, this type of under-investment is not driven by the interrelation
with other market participants and resulting incentive systems. Of course, secu-
rity countermeasures may require significant capital investment from the outset.
When we introduce sunk costs to our model, we find that for moderate levels of
uncertainty, higher sunk costs can raise the proactive protection investment.

We then translate these findings about optimal defensive strategies into ac-
cepted security indicators such as annual loss expectancy (ALE) and return on
security investment (ROSI). Return on investment drops as uncertainty about
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known attacks rises, even as the defender grows increasingly reactive when coun-
tering realized threats.

The remainder of this paper is organized as follows: Section 2 specifies the
model, which is solved later on in Section 3. We apply the model to real problems
in two case studies on current topics of information security, namely online crime
(Sect. 4.1) and payment card security (Sect. 4.2). Section 5 puts our contribution
into perspective with prior art, and Section 6 concludes the paper.

Readers who want to glance over the paper without getting into the formal
details may find the model summary in Section 2.5 along with the interpretation
of example results in Section 3.3 most useful. Also the case studies (Sect. 4) and
the general conclusion (Sect. 6) do not require deep understanding of the model.

2 Model

Imagine a simplistic world, in which a defender protects an asset of value a
against a dispersed set of possibly heterogeneous attackers. There exist n possible
threats, which can be regarded as distinct attack vectors against a single system.1

Each threat can be warded off by investing in its corresponding defense (or
control). In other words, we assume a one-to-one mapping between threats and
defenses, and defenses are always effective.

2.1 Defender’s options

The model is ‘run’ in an iterated game with discrete time t. In each round,
the defender makes a security investment decision to define his configuration of
defenses dt and extracts a net return r · a from his asset before the attacker
penetrates the system and, if successful, loots a fraction z of the asset. Gross
returns are consumed or distributed so that the asset value does not accumulate
over time.

Let elements di of the binary column vector d ∈ {0, 1}n indicate whether a
defense against the i-th threat is implemented (di = 1) or not (di = 0), and let
k =

∑n
i di be the number of defenses in place.

The cost of defense ct in round t can be calculated from an n × n upper
triangular cost matrix C to reflect possible interdependent defenses,

ct = dt C dt . (1)

Diagonal elements Ci,i hold the cost to implement a defense against the i-th
threat, and off-diagonal elements Ci,j , j > i indicate the extra costs if the i-th
defense is implemented together with the j-th defense. If all off-diagonal elements
are zero, then the defenses are independent:2

1 An alternative interpretation is that threats represent distinct targets in a distributed
system that together form asset a. This interpretation comes close to the notion of
weakest target as opposed to weakest link games in [4].

2 We do not consider higher-order interdependence such as extra costs if three or more
defenses are involved.
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C =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 C =


1 0 1/2 0
0 1 0 0
0 0 1 −1/2
0 0 0 1


(a) independent defenses (b) conflicting defenses: 1 and 3

complementary defenses: 3 and 4

Why go to the trouble of modeling interdependent defenses? First, organi-
zation science suggests that complexity adds super-linear administrative costs,
for instance to pay a manager who directs several employees where each is an
expert for a particular control. Conflicting defenses also emerge from incompat-
ible systems, e. g., running two virus scanners on the same machine to increase
coverage slows down the machine and causes errors. Lastly, human behavior fun-
damentally limits the composability of defenses: a password policy that requires
both special characters (defense 1) and frequent password changes (defense 2)
encourages people to stick their password on their monitor.

A nice property of the cost matrix is that for positive off-diagonal elements,
decreasing marginal utility of defenses has become endogenous to our model.
This compares favorably to, say, the Gordon–Loeb framework, in which this
property appears as an assumption (A3 of [3, p. 443]).

Sunk costs

So far we assume that the defender can upgrade his configuration dt at any
time. This may be necessary to adjust it to new information on the threat level
or to changing risk appetite. For example, a start-up company is exposed to so
many risks that is might tolerate a moderate level of information security risk.
As the venture grows and develops a brand name, its risk aversion will increase
to reflect the higher damage caused by potential reputation losses. Conversely,
market competition (alongside herd behavior and short-sighted incentives to
management) may drive firms to decrease their risk aversion for the sake of
higher expected profits.

As is argued in [3], security disinvestment is often possible to a certain de-
gree, since personnel can be fired or equipment sold (though sometimes at high
transaction costs). However, for many businesses, updating dt may be very ex-
pensive and the costs are ‘sunk’ in the sense that money is spent irrevocably.
For instance, the vast majority of the cost to incorporate new security features
into bank notes or payment cards are borne when the changes are first made.
Producing and distributing tailored tokens or devices to a large and dispersed
community is expensive, and unlikely to be repeated often. As sunk costs con-
siderably affect the strategy of security investment in an iterated setting, we
include them in our model as follows:

st =

{
0 if t = 1 or dt = dt−1

λ · a else.
(2)
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Hence, parameter λ ≥ 0 controls the amount of sunk costs.

2.2 Defender’s knowledge

While the defender may possess some intuition about the relative difficulty of
carrying out the n threats, such knowledge may very well be blurred. To model
this uncertainty, we order the threats 1, . . . , n by increasing expected cost of
attack (the expectation is taken from the point of view of the defender).3 This
constitutes our notion of an attack profile. We define a simple functional form
for the expected attack costs xi of the i-th threat as follows,

xi = x1 + (i− 1) ·∆x ,with ∆x > 0 . (3)

The unknown true cost xi, however, is modeled as a Gaussian random variable
with mean xi and standard deviation σ/∆x (censored to values xi ≥ 0),

xi = sup(0, χi) with χi ∼ N (xi, σ/∆x) . (4)

Note that the realizations χi are drawn only once and keep constant over time.
We can vary the level of uncertainty by adjusting parameter σ. Modeling uncer-
tainty in this way is crucial to the model, since it captures the difficulty defenders
face in anticipating which of the undefended threats turns out to be the weakest
link exploited by the attacker. Figure 1 illustrates the role of uncertainty when
ordering threats. The left graph plots a perfect matching between expected and
realized costs of attack under certainty; under uncertainty, by contrast, the right
graph shows that threat 4, not threat 3 as expected, is the weakest link if defenses
1 and 2 are in place.

The defender’s knowledge about the attack profile may increase over time
when observed attacks reveal which threat is the weakest link with respect to a
given configuration dt.

2.3 Attacker’s options and knowledge

Our attacker model is very simple: the attacker identifies and exploits the weakest
link, i. e., the threat least costly to the attacker. We do not require the attacker to
make a trade-off between cost and potential gains by assuming the same utility
is received for exploiting all threats. If the attacker succeeds, regardless of how,
he profits z · a, which is added to the defender’s cost. Unlike the defender, the
attacker is certain of the cost for each realization of xi. The attacker does not
operate indiscriminately; rather, he only attacks when it is profitable to do so,
that is, if the term maxi(z · a− xi) is not negative.

3 Ordering the inputs this way is also convenient because it allows us to ignore the
threats deemed too unlikely when deciding what to defend. This way, we can think
of the n threats as those anticipated by the defender.
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(b) uncertainty: σ = 1

Fig. 1. Attack profile: Modeling uncertainty about true attack costs

2.4 Simplifying assumptions

We acknowledge that the attacker assumptions are quite strong and probably
unrealistic in some cases. For targeted attackers in particular, searching for the
weakest link could be very expensive (though the chance that one of many op-
portunistic attackers [5] finds the hole accidentally is quite high.) Moreover, the
attacker’s gain from successful attacks may only represent a small fraction of the
defender’s losses. But this is not crucial here since we do not consider attackers’
profits; we simply need an asset-dependent quantity to relate to the cost xi.
A level shift of xi could easily account for the negative balance (destruction of
wealth) after successful attacks. This assumption is also common in the litera-
ture [6], and justified there by attackers who mainly care about inflicting harm
on the defender. In sum, we consider it prudent to err in the direction of a more
powerful attacker than an unrealistically weak one.

To make the analysis more tractable, we restrict the space of possible cost
matrices C by fixing all diagonal elements Ci,i to a unit cost of value one and
all off-diagonal elements Ci,j , j > i to the same constant % ≥ 0. Hence, we can
now derive from Eq. (1) a simple expression for the cost per round to maintain
k defenses,

ct =
%

2
k2 +

(
1− %

2

)
k . (5)

Observe that ct ∼ O(k2) if % > 0 and ct ∼ O(k) if % = 0. Of course, given better
data or assumptions on the cost of defenses, these assumptions can be relaxed
and C populated with other values.

We further assume a risk neutral defender, that is, one who maximizes inter-
temporal utility as a linear function of (expected) revenues and costs. We defer
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consideration of other attitudes towards risk to future work in order to keep the
core model lean.

2.5 Model summary and example parameters

Our model can be applied to many scenarios. For now, we consider an imaginary
online music store to demonstrate its parameters in action (we describe other,
more compelling scenarios in Sect. 4). The music store’s asset is the library of
audio files and the associated property rights. Let the total value of the asset be
one million dollars. To avoid large numbers, we count in thousands of dollars, so
asset value a = 1 000. Every year, indexed by t, the net return from online sales
amounts to r = 5 % of the asset value.

Table 1. Overview of model parameters

Parameter Symbol Example values

Business model
asset value a 1 000
time in years t 1, . . . , tmax

return r 5.0 %

Attacker
number of threats n 25
loss given attack z 2.5 %
expected minimum attack cost x1 15
gradient of attack cost ∆x 1
level of uncertainty σ 0, . . . , 16

Defense
cost of each individual defense 1 1 (unit definition)

defense interdependence % 0.1
sunk costs λ 0

Surrounded by malicious competitors and professional cyber-criminals, the
store is exposed to various threats, say, n = 25. In case of a successful attack,
the store loses z = 2.5 % of the asset value, or $25 000, due to forgone sales and
incurred damage. It is known (from industry sources) that, on average over all
similar businesses, the cost of a successful attack is at least 15 000 dollars (x1 =
15). This could be the price for a standard exploit on the vulnerability black
market [7, 8]. Attack costs also rise with novelty and difficulty of implementation,
on average by 1 000 dollars for each level of sophistication. Hence, the gradient
of the attack cost is ∆x = 1. However, these are only average values and it is
unknown how much the actual costs are to attack the particular business. This
uncertainty can be expressed by the deviation σ of the attack costs around the
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average. To put this parameter in perspective, σ = 0 means that all attacks
can be predicted perfectly, σ = 1 means 96 % of the attacks can be predicted
correctly,4 and for σ = 16, predicting attacks is only 65 % successful. This is still
somewhat better than random guessing.

The store owner is not entirely helpless: he may spend on security measures
to defend against each of the n = 25 threats. Each defense costs 1 000 dollars
per round (this is a constant that defines the unit, so no symbol is required).
On top of that, defense interdependence with parameter % = 0.1 accounts for
additional cost for every pair of installed defenses. As a consequence, every in-
vestment in security must be carefully considered, since countermeasures added
later cost more due to increased complexity and interoperability challenges. Fi-
nally, parameter λ controls (optional) sunk costs. It describes the cost to update
the defense configuration as a fraction of the asset value a. In the example of
a music store, sunk costs are negligible (i. e., λ = 0) since security upgrades do
usually not render existing investment useless. We include sunk costs mainly to
model scenarios where upgrading defenses requires replacing existing infrastruc-
ture, such as exchanging all customers’ payment cards or security tokens.

Table 1 summarizes the parameters of our model and their values used in the
subsequent examples. The following section will show how defenders can optimize
their security spending in this model. Our main interest is on the reaction of the
optimal strategy to changes in the level of uncertainty σ; we also elaborate on
the role of sunk costs λ.

3 Analytical results

We distinguish between static analysis, where the defender chooses the configu-
ration in the first round (t = 1) and keeps it constant further on, and dynamic
analysis, where the configuration is updated in every round. In case of certainty
(σ = 0), a static solution exists that is at least as good as any dynamic strategy.
Sunk costs only occur in the dynamic setting.

3.1 Static solution

We consider a defender with defense vector d where the k lowest cost threats
are defended, leaving the remaining n − k threats unprotected: d1, . . . , dk = 1
and di = 0, k < i ≤ n. Let f(k) be the return function for this defender,

f(k) = a(r − zq)− ct (6)

= a(r − zq)− k − %

2
(
k2 − k

)
, (7)

4 all other parameters as specified in Table 1
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where q is an indicator variable that takes value one if the attacker is successful
and zero otherwise. In the case of certainty, q is fixed for all rounds, so that
two outcomes are possible:

fatt = a(r − z) (attack) and (8)

fatt(k) = ar − k − %

2
(
k2 − k

)
(no attack). (9)

The cost term disappears in Eq. (8) because if we accept attacks anyway, then
there is no need to spend money to make it more difficult for the attacker (i. e.,
k = 0). Otherwise, the minimal number of defenses k∗ to defeat all attacks can
be calculated by rearranging Eq. (3) and comparing it to the attacker’s gain za,

k∗ =
⌊
za− x1 +∆x

∆x

⌋
. (10)

Typically, the best strategy for the defender is to follow either Eq. (8) or (9),
whatever is higher. When Eq. (9) is negative and Eq. (8) is positive, the defender
finds it profitable to operate without investing in any security measures. When
both equations are negative, the cost of attacks and the cost of defending them
are both so high that the defender’s business becomes unviable.

In the case of uncertainty (σ > 0), q becomes a random variable and a
risk neutral defender maximizes E (f(k)), where expectations are taken over the
realizations of q. For a static solution, it is still rational to use configurations
in which lower-order threats are defended first. So we can calculate E (q) as a
function of k as the probability that the cost of at least one of the unprotected
threats falls below the threshold za,

E (q(k)) = 1−
n∏

i=k+1

(1− Φ(z · a;x1 + (i− 1) ·∆x, σ/∆x)) , k < n (11)

where Φ(x;µ, σ) is the cumulative distribution function of the Gaussian normal
distribution. The product term is the probability that none of the n − k unde-
fended threats materializes, so one minus this term is the probability of at least
one successful attack. Inserting into Eq. (7), we obtain

k∗ = arg max
k

E (f(k)) = arg max
k

a (r − z E (q(k)))− k − %

2
(
k2 − k

)
. (12)

Figure 2 depicts return estimates of the static solution for typical parameters
as a function of k. Each curve corresponds to different levels of uncertainty;
the utility-maximizing selection of k∗ for each uncertainty level is highlighted
in yellow. In the case of certainty (σ = 0), the optimal security investment
amounts to k = 11 defenses (Eq. (10)). Increasing uncertainty affects the optimal
strategy in a non-linear manner: while some noise in the predicted attack costs
lets the defender take more proactive counter-measures (σ = 1, 2), the cost of
this over-investment start to outweigh the protected revenues when uncertainty
is too high (σ = 4, 8). Eventually, it becomes rational for more uninformed
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Fig. 2. Static solutions for the following set of parameters: asset value a =
1 000, return r = 5 %, loss given attack z = 2.5 %, min. expected cost of attack
x1 = 15, gradient of attack cost ∆x = 1, defense interdependence % = 0.1, and
n = 25. The optimal number of defenses is highlighted in yellow for each curve.

defenders to refrain from any defense and instead accept moderate losses in each
round. In other words, knowing your enemy is a prerequisite for taking tailored
countermeasures, and tailored defense is the only option if comprehensive defense
(i. e., k = n) is prohibitively expensive.

3.2 Dynamic (iterated) solution

When σ > 0 (uncertainty), the static solution is often sub-optimal because
observed attacks reveal additional information about the true cost of attack
which should have been used to re-configure the defenses adaptively. Under the
dynamic case, uncertainty is repeatedly eliminated for targets revealed to be the
weakest link. Consequently, this reduction in uncertainty for later rounds can
lead to a better outcome for the defender than in the static case. In general,
the inter-temporal outcome is the sum of all returns over a period of time t =
(1, . . . , tmax),

y =
tmax∑
t=1

f(dt,dt−1) =
tmax∑
t=1

(a(r − zqt)− ct − st) , (13)

and can be maximized by adjusting dt adaptively. At each point in time t, the
defender learns about the materialized threat (if any) of period t− 1. In Eq. (13),
ct, st and qt, are functions of the sequence of configurations dt and the random
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realization of x. Due to this stochastic component and its subsequent path de-
pendencies through adaptation, the analysis must be based on expectations over
all possible realizations. We will first discuss the simpler case without sunk costs
(i. e., λ = 0) before moving on to the general case.

Without sunk costs, the defender has to choose a proactive defense d1

against the k1 most probable threats, so that di,1, . . . , dk1,1 = 1 and di,1 = 0,
k1 < i ≤ n. Unless this configuration is already secure, the defender would
iteratively add another defense in each round as the attacker targets new weak
links. The order of these reactive defenses is determined by the order of xi, and
thus by the realization of the random vector x. This way, one weakest link is
fixed after another. It follows from the path dependencies that once a secure
configuration is found, the defender would not touch d anymore: in this model,
it is always better to start with a lower proactive defense k1 than tinkering with
existing defenses after a couple of rounds. (This is so because the uncertainty
about x1, . . . , xk1 is not reduced. And the direct and indirect (% > 0) cost of the
k1-th defense has to be born for all intermediate rounds.)

Let tatt ≤ tmax be the number of rounds with successful attacks, then
dtatt+1 = dt ∀ t > tatt is the final secure configuration that is eventually reached
if tatt < tmax. So Eq. (13) without sunk costs can be rewritten as

y =
tatt∑
t=1

(a(r − z)− ct) +
tmax∑

t=tatt+1

(ar − ct) (14)

= tatt · a(r − z)−
tatt∑
t=1

ct + (tmax − tatt)(ar − ctmax) , (15)

after plugging in Eq. (5) we obtain:

= tatt · a(r − z) + (tmax − tatt)(ar − ctmax)− %

2

k1+tatt∑
k=k1

k2 −
(

1− %

2

)k1+tatt∑
k=k1

k . (16)

Eq. (15) holds because ct is constant when dt is constant. A closed-form expres-
sion for Eq. (16) can be obtained by replacing the remaining sums by first and
second order arithmetic progression formulas. This expression gives the output y
as a function of the proactive defense k1 and the number of rounds under attack
tatt. The latter parameter in fact depends on the random realization of x. So the
expectation of the term in Eq. (16) can be calculated by the sum of all possible
values for 0 ≤ tatt ≤ tmax, weighted by the respective probability of occurrence
P(tatt).

To calculate P(tatt), we interpret the condition for a successful attack xi ≤
z · a as Bernoulli random variable with probability of attack

pi = Φ(z · a;x1 + (i− 1) ·∆x, σ/∆x) . (17)

Hence, p is the parameter vector of non-homogeneous independent Bernoulli
variables. For reasonable parameter choices, the sum of these random vectors can
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Fig. 3. Dynamic solutions for the same set of parameters as in Fig. 2: asset
value a = 1 000, return r = 5 %, loss given attack z = 2.5 %, min. expected cost of
attack x1 = 15, gradient of attack cost ∆x = 1, defense interdependence % = 0.1,
and n = tmax = 25. The optimal number of proactive defenses is highlighted in
yellow for each curve.

be approximated by the Gaussian distribution with location µ =
∑n

i=1 pi and
variance ς =

∑n
i=1 pi(1−pi). This completes the analysis. Next, we compute the

optimal choices for the proactive defense k∗1 (that maximize the expected inter-
temporal outcome) with numerical methods by searching for the supremum in
the integer range k1 = 0, . . . , n.

Figure 3 shows return estimates per round of the dynamic solution for the
same parameters as in Figure 2, now as a function of the proactive defense k1.
(As in Figure 2, the optimal proactive defense for each value of σ is highlighted
in yellow.) Obviously, in the case of certainty (σ = 0), the optimal proactive
defense k∗1 = k∗ = 11 equals the result of the static analysis. If there is no
uncertainty, a defender does not gain any information from observed attacks
and can define the optimal configuration entirely proactively. However, as soon as
uncertainty arises, the optimal strategies in the static and dynamic case diverge.
While some uncertainty (σ > 0, but small) makes a static defender more cautious
(to reduce the probability of being vulnerable) and leads him to spend more, a
dynamic investor knows that he will be able to adjust later and can thus take
on more risk in the first place. The higher the uncertainty, the more valuable is
information gleaned from observed attacks, and the lower the optimal share of
proactive defense becomes. Since it is not economically viable for static defenders
to compensate for uncertainty with ever higher security spending, there exists
a threshold above which any security investment cannot defeat attacks. In this
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case, the defender ‘surrenders’ and accepts the losses in each round. Observe that
this state is already reached for σ = 4 in Fig. 2, whereas much higher uncertainty
is needed to refrain from all proactive investment in the dynamic case (σ = 16
in Fig. 3). So we gain the insight that the sheer possibility of adjusting defenses
reactively can stimulate proactive security investment if the uncertainty is very
high.

To consider sunk costs, Eq. (13) is rearranged to the form of Eq. (14) as
follows:

y =
tatt∑
t=1

(a(r − z)− ct − st) +
tmax∑

t=tatt+1

(ar − ct) . (18)

The second sum does not include st because dt remains constant for t > tatt.
Rearranging and inserting Eq. (2) yields

y = λ · a+ tatt · a(r − z − λ)−
tatt∑
t=1

ct + (tmax − tatt)(ar − ctmax) . (19)

Now we proceed as with Eq. (16) in the case without sunk costs. It is possible to
stick with the same strategy of iterated investment because the elements of the
random vector x are independent and observing one attack does not shed any
light on what the next weakest link will be. So even with sunk costs, it would
be irrational to invest in bundles of reactive defenses if one had not done so
right at the beginning. Nevertheless, the existence of non-negligible sunk costs
substantially changes the effort spent on proactive measures. For a finite tmax,
however, it is rational for the defender to reflect on the strategy after having
observed an attack in t1: for very high λ, he might prefer not to defend at all
and accept losses in the remaining tmax − 1 rounds. This is like a reduction to
Eq. (8) of the static case. So effectively, introducing sunk costs in our model
can be seen as an increase in z for tatt rounds (if the iterated patching starts)
combined with the option to fall back to the static case (without the increase in
z).

In Figure 4, we fix two settings for the level uncertainty, moderate (σ = 4)
and high (σ = 7), and plot expected returns per period as a function of the
proactive defense k1 for various settings of λ. Observe in Fig. 4 (a) that higher
sunk costs trigger greater precaution and force the defender to invest more in
proactive security. This jibes with common sense. However, if the uncertainty
is high, then there exists a threshold for the sunk costs above which a defender
‘surrenders’ and prefers to cope with the attacks, as visible in Fig. 4 (a) for values
of λ > 1 % of the asset. The similarity to the static case can also be seen by
comparing the similar shape of the curves. Note that these results should be
interpreted with caution as they depend on a finite horizon tmax, which might
not apply to all business cases.
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Fig. 4. Dynamic solutions with sunk costs for moderate (top) and high
(bottom) uncertainty. Same parameters as in Fig. 2: asset value a = 1 000,
return r = 5 %, loss given attack z = 2.5 %, min. expected cost of attack x1 = 15,
gradient of attack cost ∆x = 1, defense interdependence % = 0.1, and n = tmax =
25. λ controls the height of sunk costs (as fraction of a), and σ the degree of
uncertainty. The optimal number of proactive defenses is highlighted in yellow
for each curve.
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3.3 Quantitative results

As we have analyzed the optimal strategies of the defender in the previous sec-
tions, we can now use the model to calculate some key indicators that relate to
practical experience. Table 2 compares typical security indicators derived from
the model for different degrees of uncertainty (in columns) and different defense
strategies (row sections – static / dynamic / dynamic with sunk costs). The list
of indicators includes:

– Optimal defense is a memo item that describes the optimal defense strat-
egy k∗(1). All other indicators are computed on the assumption that a rational
defender follows this strategy.

– Attack intensity measures the probability of a successful attack per round,
averaged over all tmax rounds.

– Average gross return is the objective function of the optimization prob-
lem, scaled to a percentage of the asset value a. The average is computed
over all tmax periods and expectations are taken over all realizations of the
stochastic component x, weighted by their respective probability of occur-
rence. Higher values are better.

– Average security spending is the average effort spent on defenses, com-
prising direct, indirect and sunk costs (if applicable). Averages and expecta-
tions are computed as above. Lower values are not necessarily better; what
matters is the efficiency of the security spending, i. e., how security spend-
ing compares against prevented losses. This depends on how targeted the
defense configuration is to the realization of the attack profile.

– Annual loss expectation (ALE) measures expected foregone profits per
period [9].5 ALE can be computed for two scenarios: ALE0 is the (hypo-
thetical) ALE if no defenses were deployed, and ALE1 is the ALE of the
respective defense strategy. Expectations are taken over realizations of the
random vector x.

– Return on information security investment (ROSI) is a summary
measure to quantify the effectiveness of security investment. We follow the
approach in [10] and normalize the indicators by the security spending, i. e.,

ROSI =
ALE0 −ALE1 − avg. security spending

avg. security spending
. (20)

Higher values denote more efficient security investment. The indicator is not
defined for cases where no defenses are optimal.

Unsurprisingly, the three modes of adaptivity concur in the case of certainty
(leftmost column in Table 2). However, uncertainty creates some remarkable
results, which we now discuss.

For moderate levels of uncertainty (σ = 1), replacing a static with a dynamic
defense strategy primarily reduces security spending, which leads to more ob-
served attacks. However, gross returns increase, too. So in fact, security spending
5 We stick to the term ‘annual’ to be consistent with the literature and assume that

time periods in the model correspond to financial years.
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Table 2. Key security investment indicators derived from the model

Level of uncertainty
Indicator σ = 0 σ = 1 σ = 4 σ = 8

Static defense
optimal defense k∗ 11 12 0 0
attack intensity (% rounds) 0.0 2.4 100.0 100.0

avg. gross return (% asset) 3.4 3.1 2.5 2.5
avg. security spending (% asset) 1.6 1.9 0.0 0.0

ALE1 0.0 0.6 25.0 25.0
ROSI (% security spending) 51.5 31.2 — —

Dynamic defense w/o sunk costs
optimal proactive defense k∗1 11 9 7 3
attack intensity (% rounds) 0.0 6.1 15.7 32.7

avg. gross return (% asset) 3.4 3.2 3.0 2.7
avg. security spending (% asset) 1.6 1.5 1.6 1.4

ALE1 0.0 1.5 3.9 8.2
ROSI (% security spending) 51.5 52.8 35.2 18.9

Dynamic defense w/ sunk costs
optimal proactive defense k∗1 11 10 9 0
attack intensity (% rounds) 0.0 2.9 9.8 100.0

avg. gross return (% asset) 3.4 3.2 2.8 2.5
avg. security spending (% asset) 1.6 1.6 1.9 0.0

ALE1 0.0 0.7 2.5 25.0
ROSI (% security spending) 51.5 50.6 15.7 —

Memo items: no defense
avg. gross return (% asset) 2.5 2.5 2.5 2.5
ALE0 25.0 25.0 25.0 25.0

Parameters: asset value a = 1000, return r = 5 %, loss given attack z = 2.5 %,
min. expected cost of attack x1 = 15, gradient of attack cost ∆x = 1, defense
interdependence % = 0.1, sunk costs λ = 2.5 %, n = 25, tmax = 25. All figures
rounded to 1 digit.
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is better targeted, over-investment is reduced, and the overall efficiency of secu-
rity investment, as measured by the ROSI indicator, improves. From this result,
we can draw an alternative interpretation to the omnipresent reports of security
breaches in the media: rather than rashly framing them as engineering failures,
one can also view them as unavoidable side-effects of smart defense strategies
that balance the amount of proactive and reactive security investment.

Regarding attack intensity, a converse effect is observable when uncertainty
is higher (σ ≥ 4). Here, the attack intensity drops substantially from (almost)
100 % in the static case to a very low rate in the dynamic case. At the same time,
average returns increase. The reason for this is that high uncertainty lets some
defenders refrain from deploying any defenses (and thereby absorbing losses).
Only a staged approach gives these investors an incentive to defend against the
most aggressive threats. Note that the model identifies the rational response
to the private costs faced by defenders. We ignore the public costs created by
insecurity. While not addressed by this paper, negative externalities of poor secu-
rity practices [2, 11, 12] are widely considered to be a significant public problem.
Hence, while it may be narrowly better for some defenders to skimp on security
when they are unsure whether they will be targeted, a public policy response may
be necessary to compensate for the negative externalities of insecurity caused by
such under-investment.

The presence of sunk costs muddies this picture somewhat. Sunk costs raise
incentives towards more proactive security investment. This leads to higher
proactive defenses and thereby lower attack intensity. However, sunk costs also
eat up margins, so gross returns tend to decline. Even more importantly, the
overall efficiency of the security investment drops, and the differential grows
as uncertainty rises. So moderate uncertainty combined with expensive infras-
tructure upgrades can stimulate over-investment – but only to a certain point.
Eventually, high uncertainty can demotivate any security investment, similar
to what happens in the static case. In the real world, we would expect to see
relatively more weight on proactive security when sunk costs are high (e. g., pay-
ment cards) and uncertainty is low or moderate, compared to businesses with
negligible sunk costs (e. g., web sites). This prediction could be tested against
cross-sectional empirical data in future work. In any case, the above-mentioned
excuse of breaches as smart defense strategy does not apply to defenders with
high sunk costs. The policy dimension here is to reduce the uncertainty when
it is so high that it discourages security investment. This can be done, for in-
stance, by encouraging information sharing [13, 11] so that the cost of reducing
the uncertainty can be shared between several defenders.

Note that all these conclusions remain fairly robust for other parameters than
the example set in Table 1. For brevity, we refrain from discussing the influence
of all other parameters. Instead, we demonstrate the validity of our model by
applying it to two case studies where real data is available.
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4 Empirical evidence for iterated weakest links

The observation of imperfect security and gradual improvement is at the core of
the endeavor to study information security with means and methods borrowed
from economics [14, 1]. In the following, we will point the reader to past ‘iterated
arms races’ in the realm of information security. And we argue that such dynam-
ics, against the backdrop of our model, may in fact be rational and should not
simply be framed as ‘failures’. We have selected two cases, one with seemingly
negligible sunk costs (Sect. 4.1) and another one where sunk costs should not be
ignored (Sect. 4.2).

4.1 Case 1: Phishing and online crime

It can be argued that the security of computers comprising the Internet follow
an iterated weakest link model. Fundamental to the Internet’s design is the no-
tion that any connected computer can communicate with every other computer.
Attackers have relentlessly exploited this structure, constructing networks of
compromised machines (so-called botnets) to pester legitimate users by emit-
ting spam, distributing malware and hosting phishing websites. Internet service
providers (ISPs) are usually well-placed to detect infection, because evidence of
a user’s infection flows over an ISP’s communication systems. Moreover, large
companies that act as Internet service providers have technical staff who can de-
tect and clean up infected machines, while domestic users and small businesses
are mostly helpless to even recognize when they are compromised, let alone to
take appropriate remedial action. However, for every responsible ISP that keeps
a clean network, there are countless others who find it more cost-effective to
ignore the problem and let infections flourish.

Moreover, there is substantial evidence that attackers concentrate their ef-
forts at the most irresponsible ISPs, moving on to others once the ISP cleans
up its act or is shut down. For instance, until 2007, a lot of the world’s malware
was hosted by the Russian Business Network (RBN), which refused to comply
with requests from international law enforcement [15]. After Russian Business
Network suddenly went offline in late 2007, malware distribution shifted to other
ISPs. In November 2008, a journalist from the Washington Post persuaded up-
stream bandwidth providers to shut off their connection to San Francisco-based
McColo [16], which led to a temporary fall of almost 70 % in the volume of
spam worldwide. Apparently, many botnet herders had been using McColo to
host their control machines. Spam volume has since recovered as the spammers
found new safe havens. And recently EstDomains, which served as the primary
domain name registrar for malicious websites hosted by Russian Business Net-
work [17], became the first domain registrar to have its accreditation terminated
by the Internet Corporation for Assigned Names and Numbers [18], the not-for-
profit corporation that plays a leading role in coordinating the Internet’s naming
system. Unfortunately, other irresponsible registrars remain.

Attackers can often move on to exploit the next weakest link in the Internet
far faster than defenders can knock them out. Moore and Clayton [19] showed
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how one leading group of online fraudsters, the rock-phish gang, operates. It
registers many malicious web domain names to carry out attacks. Periodically,
the gang picks a firm for registering Internet domain names that it has never
used before and registers hundreds of web domains, using false names and stolen
credit cards. These domains do not resemble normal bank names, so a registrar
may not identify foul play, and the first domains to be used for false purposes
are not removed quickly.
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Fig. 5. Take-down speed for phishing attacks targeting different domains.

Figure 5 presents scatter plots of phishing site lifetime based on the date
reported from data of [19]. Both .hk (Hong Kong) domains (left) and .cn (China)
domains (right) lasted much longer in their first month of use than in later
months. The gang targeted Hong Kong domains first in March 2007, followed
by Chinese domains in May 2007 after the Hong Kong authorities wised up.
Other researchers have found that websites hosting most malware move from
one registrar to the next [20].

4.2 Case 2: Payment card security

Financial transactions have long been subject to fraud, and banks and payment
processors have recognized that fraud has to be managed rather than eliminated.
In 2000, the UK banks decided to adopt the EMV card payment system designed
by Europay, Mastercard and Visa, popularly known as ‘Chip and PIN’ [22]. The
Chip and PIN roll-out provides a compelling example of taking security decisions
to tackle the weakest link, only to find that the attackers react by exploiting new
holes previously ignored. A May 2007 internal report prepared by APACS, the
UK payment association, compared the expected benefits from EMV adoption to
fraud incidence over time. While the report was intended to be kept confidential,
it was accidentally leaked and is now hosted on the Cryptome website [21]. We
use the data gleaned from this report to demonstrate how the bank’s fight against
card fraud has essentially been a sequence of patches to plug weak links.
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Fig. 6. Financial losses due to fraud over time. On top, fraud rates as a fraction
of overall turnover from 1972–2006. On bottom, ten-year fraud projections made
in 2000 comparing whether Chip and PIN is adopted (blue and red lines), plus
actual fraud rates (green line) (Source: [21]).
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Figure 6 (top) plots the annual percentage of transaction turnover found to
be fraudulent from 1972 to 2006. Notably, there are significant swings in the rate.
According to the report, “the industry has responded to crises in card fraud by
making significant investment in new preventative measures,” including “termi-
nalisation in the early 80s and, later, a major increase in levels of authorisation
during the mid 90s.” Such behavior is consistent with our model of iterating
through successive weakest links.

Around 2000, a fear arose that another uptick in the fraud rate was imminent.
The blue diamond line in Figure 6 (bottom) plots the forecast losses due to fraud
based on maintaining the status quo as of 2000. To stem this expected rise in
fraud, UK banks decided to adopt the EMV standard (Chip and PIN) over the
course of the next few years. The estimated cost of implementing EMV across
the UK was just over £1 billion, to be shared between the banks and retailers.
We can interpret this investment to roll out EMV as sunk costs. The red square
line in Figure 6 (bottom) plots the forecast losses following EMV adoption. The
uptick to 2003 is due to the phased roll-out of the technology.

In fact, the actual losses look rather different (green triangle lines in Figure 6
(bottom)). The anticipated explosion of fraud in the early 2000s did not ma-
terialize; strikingly, the full adoption of Chip and PIN (completed in 2005) did
not significantly alter the fraud totals. Instead, a slow but steady increase was
observed, both before and after EMV adoption.

Digging a little deeper, we can see that the switch to EMV did significantly
alter attacker strategy, even if it did not significantly shift the aggregate fraud
rates. Instead, as some types of fraud diminished, other techniques quickly filled
the gap. For instance, Chip and PIN has caused a dramatic drop in face-to-
face retail fraud, since forging a signature is easier than guessing the right PIN.
In 2004, face-to-face fraud totaled £219 million; in 2006, after Chip and PIN
became mandatory, it fell to £72 million (see the table in the top of Figure 7).
However, card-not-present (CNP) fraud (where only the card number is used,
as in online transactions) has sharply risen since the introduction of Chip and
PIN, from £150 million in 2004 to £216 million in 2006, and it is projected to
grow sharply thereafter. This is not surprising, since PINs are not verified for
CNP transactions.

Another example of attackers moving to weaker links can be found by looking
at where ATM fraud takes place. With the adoption of Chip and PIN, ATMs
in the UK stopped verifying PINs using magnetic stripes, requiring the PIN be
verified using the more secure chip. However, many ATMs outside the UK still
allow the less secure verification via magnetic strip. As UK ATMs switched over
during 2006, fraudsters immediately adapted to cashing out via less secure inter-
national ATMs. Figure 7 (bottom) shows how this transformation happened. In
December 2005, when most UK ATMs still allowed magnetic stripe PIN verifica-
tion, £6 million out of the total £6.5 million stolen from ATMs took place within
the UK. By the end of the year, after the switch to more secure verification, the
total monthly fraud increased to over £9 million, with nearly 75 % of the losses
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Fraud type 2004 2006
Face-to-face retail £219m £72m
Card-not-present (UK) £100m £138m
Card-not-present (Int’l) £50m £78m

Fig. 7. Shifting attacker strategy following EMV adoption: the table shows how
card-not-present fraud has risen as face-to-face retail fraud has dropped; the
bar graph shows how ATM fraud has moved overseas to ATMs which haven’t
made the switch to chip verification, but still rely on less secure magnetic stripes
(Source: [21]).

occurring overseas. This is compelling evidence of how quickly attackers can shift
to find the next-weakest link once the biggest hole has been plugged.

The EMV standard actually provides several options for implementation that
vary in the cost and security achieved. While the UK EMV implementation was
certainly not inexpensive, its designers did opt for many of the lower-cost imple-
mentations offered by the standard. For instance, PIN verification is normally
done offline, between the card’s chip and the PIN entry device (PED). This
enables a relay attack whereby a small, legitimate transaction authorized by
a compromised terminal can be used to approve a simultaneous, much larger
fraudulent transaction elsewhere [23]. Furthermore, the communications within
the PED between the card’s chip and the PED’s processor are not encrypted.
Combined with some shoddy tamper-proofed devices, this enables PINs to be
read using a paper clip tapped inside the PED [24]. While entirely practical,
there is no evidence that these attacks are being used by attackers at present.
Instead, they seem to be focusing on the more obvious weak links of card-not-
present transactions and magnetic stripe verification at foreign ATMs. If (and
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when) these holes are plugged6, one might expect these attacks to be deployed,
which would trigger defensive countermeasures by the banks.

4.3 Attack profiles for case studies

Figure 8 plots the expected and realized costs of different attacks for the case
studies just presented. Figure 8 (a) plots a sequence of top-level domains that
potentially targeted by the rock-phish gang. First, many Chinese domains were
registered by the gang, followed by domains from Hong Kong (as shown in Fig-
ure 5). The next top-level domain targeted – Austria – came as a surprise.
Austria has an extensive Internet security community, and its law enforcement
has long cooperated with cyber investigations from other countries. Nonetheless,
the rock-phish gang registered many .at domains, and they were not removed
for a very long time. It turns out that the Austrian domain registrar nic.at
balked at removing the illicit domains without more extensive evidence docu-
menting their illegality. The domains were only removed following a public row
between the e-mail-blacklist operator Spamhaus and nic.at [26]. Finally, after
.at domains began getting removed promptly, the Turkish top-level domain .tk
was targeted.

Meanwhile, many top-level domains have not been targeted by the gang. This
includes domains such as Paraguay (.py), which we might have expected to be

6 Unfortunately, card readers used to secure online banking (and potentially all card-
not-present e-commerce) have recently been demonstrated to be insecure [25].
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an easy target for attackers7, as well as domains such as .se, .edu, and .gov
that are harder to register.

The many threats to payment card security, along with their expected and
actual costs, are shown in Figure 8 (b). Face-to-face retail fraud might reasonably
be seen as the weakest link in the payment card environment; the reduction in
face-to-face retail fraud following the adoption of Chip and PIN supports this
view. Similarly, the banks correctly anticipated that losses due to credit cards
lost or stolen inside the UK (L&S in the figure) would drop once PINs were
required for use. By contrast, fraud rates due to cards stolen outside the UK
were lower than the banks expected. Card fraud at UK ATMs is a bit harder
than retail fraud since a PIN is required. One area where the banks’ expectations
were not met is with ATM fraud on UK cards outside the UK. It turns out that
fraudsters can easily clone stolen UK cards and use them in foreign ATMs; hence
the true cost of attack is lower than expected.

The banks’ losses due to card-not-present fraud were much higher than fore-
cast; unsurprisingly, many banks have now decided to deploy readers that verify
PINs in order to carry out online banking. Meanwhile, uncertainty remains re-
garding the attacks on PIN entry devices uncovered in [23] and [24], though it
is apparent that the costs are higher than for card-not-present fraud and foreign
ATM fraud.

5 Related work

The relevance of developing quantitative models of information security has been
widely recognized in accounting [3, 27], information security [9, 28], and depend-
able computing [29–32]. Of this and subsequent literature, we briefly describe
several works with similarities to our model.8

Gordon et al.’s “wait-and-see approach” [27] comes closest to our model. The
authors explain deferred security spending in the framework of real option the-
ory and conclude that “it is economically rational to initially invest a portion
of the information security budget and defer remaining investments until secu-
rity breaches actually occur.” Similar to our argument, they name uncertainty
about the attack surface as main reason why they “expect organizations to use
security breaches as a critical determinant of their actual [. . . ] expenditures on
information security.” In this sense, our model can be regarded as a substantial

7 We do not intend to single out Paraguay; many smaller countries have not been
targeted by the rock-phish gang.

8 For the sake of brevity, we do not review in detail the extensive literature explaining
security underinvestment by interactions with other market players (e. g., by under-
supply in a lemon market [33], moral hazard in risk sharing contracts [34], market
failure in residual risk transfer [35], defense effectiveness conditional to other players’
actions [2], or general externalities [12]). A trade-off between proactive and reactive
measures is also studied in the literature on optimal configuration of response in
intrusion detection and prevention systems [36]. We deem this related, but not very
relevant, due to the narrow scope of adjusting a technical decision threshold.
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extension of the two-period case study they discuss. Gordon et al.’s work differs
from this paper in that they treat security spending as an allocation problem of
a fixed security budged rather than seeing it as capital investment to be put into
relation to the assets at risk. Also, the weakest link attacker model is unique to
our work. Both Gordon et al. and us back their claims with empirical evidence.
While they draw on cross-sectional survey data collected from senior informa-
tion officers, we cite time series of actual attacks in Section 4 to emphasize the
iterated dimension.

Only recently, Herath and Herath [37] have transferred Gordon et al.’s [27]
real option approach (ROA) to a case study of e-mail spam filtering. They com-
pare net present values (NPV), which imply now-or-never investments, to ROA.
Their results concur with our comparison between the static and dynamic solu-
tion: for their selected parameters, NPV suggests no security spending whereas
ROA indicates positive returns for deferred partial security investment.

Real options are in fact another tool to model uncertainty, learning, and se-
quential investment, so it is just plausible (and reassuring) that models based
on them come to similar conclusions. Both ROA and our iterated weakest link
(IWL) have specific merits. While ROA is more general and builds on main-
stream financial mathematics, IWL is more specific to information security and
avoids the complexity of nested option contracts and abstract parameters, such
as project volatility, which are difficult to interpret and even harder to estimate
in practice. Both approaches are compatible so that a CISO might use IWL to
make his decisions and express it in terms of ROA to convince his CFO.

Bier et al. [38] use a general game-theoretic setting to study strategic interac-
tion between a single attacker and a defender who optimizes the allocation of de-
fenses to multiple targets (two in their formal model). Unlike in our model, only
a single period is modeled; the model is designed to capture terrorism threats.
Uncertainty of the defender is a common element in both models, in which the
defender has to cope with uncertainty about an assumed hidden preference of
the attacker to target a particular target. If our notion of asset is interpreted as
a distributed system in which each target potentially gives the attacker access
to the entire system (similar to our case study in Sect. 4.1), then targets can be
interpreted as threats and (hidden) attack costs as preferences. A topic that has
no counterpart in our work is Bier et al.’s reference to signaling theory to study
whether the defense configuration should be kept secret or made public.

Another single-period game theoretic model is proposed in Grossklags et
al.’s [4] work on strategic security investment. Unlike our work, the authors
assume a truly strategic attacker. Therefore they extend Varian’s [2] security
games, one of which implements the weakest link principle, by the possibility
for the defender to use insurance. Although risk transfer via cyber-insurance is
not considered as an investment option in our model, accepting losses due to
security under-investment can be interpreted as self-insurance.

Finally, the model by Cremonini and Nizovtsev [39] explains security invest-
ment decisions with uncertainty of the attacker. They too draw on signaling
theory and conclude that a defense is good enough if, and only if, it looks strong
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enough to divert the attackers’ attention towards other, seemingly weaker tar-
gets. In this sense, their work can be regarded as a kind of mirror image to our
work, which deals with the uncertainty on the defender’s side.

6 Conclusions and outlook

In this paper, we have presented an economic model that explains why and un-
der which conditions under-investment in security can be rational, even against
known threats for which defenses exist. Under-investment might reasonably oc-
cur when a) reactive investment is possible, b) uncertainty exists about the
attacker’s relative capability to exploit different threats, c) successful attacks
are not catastrophic, and d) the sunk cost to upgrade the defense configuration
is relatively small.

Unlike in other work explaining security under-investment with market fail-
ures, the ingredients to our model solely draw on the relation between defender
and attacker, and do not involve actions of other market participants. Our re-
sult does not contradict or invalidate the well-known explanations by market
failure. It rather complements the picture and highlights that market failure is
a sufficient, but not a necessary cause for security under-investment.

Our findings suggest a need to reassess conclusions which condemn seemingly
lax security practices observable in practice. While it has long been known it may
be rational for some ISPs to overlook security, our model can assist policy makers
in reducing negative externalities as consequences (not causes) of insecurity by
better predicting situations where proactive investment is hindered. The model
helps identify influential factors, notably uncertainty about attacks and sunk
costs of defense, so that incentive-based countermeasures can be derived.

We believe an iterated weakest link model accurately captures the challenges
facing many information security threats today. We discussed two timely exam-
ples in the paper. First, miscreants committing high-volume online crime exploit
the Internet’s global, distributed architecture by compromising insecure ma-
chines and defrauding uninformed registrars, wherever they are located. Second,
the security of payment cards has evolved over time by reacting to fraudster’s
actions. Empirical data on losses shows how the introduction of Chip and PIN
in the UK has simply diverted attacker strategy to other methods, notably card-
not-present and foreign ATM fraud.

As with any stylized model, ideas for extensions are abundant and imple-
mentation should be guided by the principle of parsimony, especially in the
absence of reliable data to validate model assumptions. Nevertheless, a handful
of extensions appears reasonable to make the model more applicable. One is to
let the cost of attacks decrease over time to reflect learning and the creation
of automated tools. Another direction could be to allow more ways for reduc-
ing uncertainty. This can be done either by including information gathering as
an option for security investment (think of penetration testing and its associ-
ated cost), or by relaxing the independence assumption between the stochastic
realizations of the attack profile. The latter would allow the defender to infer
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knowledge about the probability of other threats from observed attacks. In the
presence of sunk costs, this opens new strategies of bundled investment in new
defenses to better amortize the sunk cost. Lastly, it may be of – at least aca-
demic – interest to consider other attack strategies. For example, attackers might
not choose the weakest link to confuse the defender and trigger misallocations
of security spending. Anecdotal evidence for such behavior can be found in the
actions of some spammers, who send waves of messages with no other apparent
purpose than to wear out self-learning spam filters.

One key future challenge is to find a case study where enough information
is available to calibrate the model to empirical data. More generally, it may be
worthwhile to explore further the question of when to deal with a problem. When
is it better to move first and take proactive measures, and when is it better to
defer and respond to other’s actions?
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11. Anderson, R., Böhme, R., Clayton, R., Moore, T.: Security economics and the
internal market. Study commissioned by ENISA (2008)

12. van Eeten, M.J.G., Bauer, J.M.: Economics of Malware: Security Decisions, In-
centives and Externalities. STI Working Paper 2008/1, Information and Commu-
nication Technologies. OECD (2008)

13. Gal-Or, E., Ghose, A.: The economic incentives for sharing security information.
Information Systems Research 16 (2005) 186–208

14. Anderson, R.J.: Why cryptosystems fail. Communications of the ACM 33 (1994)
32–40

15. The Economist: A walk on the dark side (30 August 2007) http://www.economist.
com/displayStory.cfm?story_id=9723768.

16. Krebs, B.: Major source of online scams and spams knocked offline. Washington
Post (2008) http://voices.washingtonpost.com/securityfix/2008/11/major_

source_of_online_scams_a.html.
17. Krebs, B.: EstDomains: A sordid history and a storied CEO. Washington Post

(2008) http://voices.washingtonpost.com/securityfix/2008/09/estdomains_
a_sordid_history_an.html.

18. ICANN: Termination of registrar EstDomains to go ahead (12 November 2008)
http://www.icann.org/en/announcementsannouncement-12nov08-en.htm.

19. Moore, T., Clayton, R.: Examining the impact of website take-down on phishing.
In: Proc. of the Anti-Phishing Working Group eCrime Researchers Summit. (2007)
1–13 http://www.cl.cam.ac.uk/~rnc1/ecrime07.pdf.

20. Day, O., Palmen, B., Greenstadt, R.: Reinterpreting the disclosure debate for web
infections. In Johnson, M.E., ed.: Managing Information Risk and the Economics
of Security, New York, Springer (2008) 179–197

21. APACS: 2007 UK Chip and PIN report (2007) http://cryptome.org/

UK-Chip-PIN-07.pdf.
22. EMVCo, L.: EMV 4.1 (2004) http://www.emvco.com.
23. Drimer, S., Murdoch, S.J.: Keep your ememies close: Distance bounding against

smartcard relay attacks. In: USENIX Security Symposium. (2007)
24. Drimer, S., Murdoch, S.J., Anderson, R.: Thinking inside the box: System-level

failures of tamper proofing. In: IEEE Symposium on Security & Privacy. (2008)
281–295

25. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to fail: Card readers for online
banking. In: 13th International Conference on Financial Cryptography and Data
Security (Financial Crypto). (2009)

26. Spamhaus: Report on the criminal ‘rock phish’ domains registered at nic.at (press
release) (2007) http://www.spamhaus.org/organization/statement.lasso?ref=
7.

27. Gordon, L.A., Loeb, M.P., Lucyshyn, W.: Information security expenditures and
real options: A wait-and-see approach. Computer Security Journal 14 (2003) 1–7

28. Schechter, S.E.: Toward econometric models of the security risk from remote at-
tacks. IEEE Security and Privacy 3 (2005) 40–44

29. Littlewood et al., B.: Towards operational measures of computer security. Journal
of Computer Security 2 (1994) 211–229

30. Jonsson, E., Andersson, M.: On the quantitative assessment of behavioural security.
In: Information Security and Privacy (Proc. of ACISP’96). Volume LNCS 1172.,
Berlin, Springer-Verlag (1996) 228–241

28



31. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process
based on attacker behaviour. IEEE Trans. on Software Engineering 23 (1997)
235–245
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