
 

 

 
 
 

Data Breaches and Identity Theft 
 
 

 William Roberds Stacey L. Schreft* 
  Federal Reserve Bank of Atlanta The Mutual Fund Research Center, LLC 
 
 

This revision: April 8, 2009 
 
 
 

Abstract 
 

 This paper studies the implications of payment networks’ collection of personal identify-
ing data and data security on each other’s incidence and costs of identity theft. To facilitate trade, 
agents join clubs (networks) that compile and secure data. Too much data collection and too little 
security arise in equilibrium with noncooperative networks compared to the efficient allocation. 
A number of potential remedies are analyzed: (1) reallocations of data-breach costs, (2) man-
dated security levels, and (3) mandated limits on the amount of data collected. 
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1. Introduction 

Modern information technology enables the collection and storage of large amounts of 

personal data. While these activities undoubtedly provide economic benefits, it has proved im-

possible to keep data completely secure against criminal misuse. Survey data suggest that in 

2006 identity thieves obtained about $49.3 billion from U.S. consumer victims. Add in the time 

and out-of-pocket costs incurred to resolve the crime, and identity theft cost the U.S. economy 

$61 billion in 2006 (Schreft 2007). 

Dollar estimates of the cost of identity theft do not by themselves indicate that too much 

identity theft is occurring. However, press accounts of data breaches suggest that personal identi-

fying data (PID)1 is collected in excess and is insufficiently protected against theft,2 and this 

view is echoed in the legal literature on identity theft and data confidentiality.3 The underlying 

message of this “popular wisdom” is that traditional data management practices have led to a 

market failure. In the words of one legal scholar (Swire 2003), the credit industry has failed to 

deliver “efficient confidentiality” of personal data. 

Government reports4 and industry sources5 give a different impression. Losses from iden-

tity theft are small, it is argued, relative to overall size of payments and credit in today’s econ-

omy. Also, much identity theft does not result from any compromise of data stored by business 

organizations, but from opportunistic, low-tech methods (e.g., stolen wallets) that can be deterred 

through intensive data analysis (Greene 2009). If there is a problem with identity theft, according 

to a common view in the industry literature, it would be best addressed through the compilation 

                                                 
1 A.k.a. “personally identifiable information” (PII). 
2 See e.g., Swartz and Acohido (2007), Caruso (2007), and Dow Jones and Company, Inc. (2008a, b). 
3 See e.g., LoPucki (2001, 2003), Solove (2003, 2004), Swire (2003), and Chandler (2008). 
4 See e.g., Synovate (2007) and United States Government Accountability Office (2007). 
5 See e.g., Cheney (2004), Experian (2006), Kirshbaum (2006), McGrath and Kjos (2006), and Javelin Research 
(2008). 
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of more (including biometric) data on individuals, not less. 

Economists (economic theorists in particular) have remained relatively quiet on issues 

regarding identity theft and data breaches.6 This paper offers an initial exploration of these is-

sues, using a model derived from contemporary monetary theory. Monetary theory is a useful 

starting point for this analysis, as it delineates two key market frictions that may be counteracted 

through the use of PID: (1) displacement of agents’ consumption demands over time, and (2) a 

limited ability to force agents to repay debts. The benefit of a credit-based payment system de-

rives from its ability to overcome these frictions, and knowledge of agents’ identities helps pro-

vide this benefit—credit is impossible without knowing who the debtor is. 

The environment in this paper extends the model of identity theft developed in Kahn and 

Roberds (2008) to incorporate the possibility of identity theft through data breaches. The paper 

begins by presenting a game-theoretic model of multiple payment card networks. Card networks 

are modeled as club arrangements for the sharing of information for intertemporal trade. Each 

club must decide how much data on its members to assemble into a database, and each also must 

choose how thoroughly to secure its database. Collecting more PID imposes costs on card-

network participants, but as industry sources assert, yields a benefit in terms of deterring attacks 

on the network. On the other hand, collecting such data can have negative spillover effects, 

because one network’s data can be stolen and used to open an account with another network. A 

network can reduce data theft (and therefore suppress identity fraud) by better securing its data-

base, but it might be cheaper to suppress fraud by increasing the amount of PID compiled. 

The paper proceeds to compare the networks’ data and security decisions to the decisions 

that a planner would implement. Under mild conditions, this analysis supports some facets of the 

“popular wisdom”: in equilibrium, too much PID is collected, and the data is insufficiently se-
                                                 
6 Some relevant literature is discussed in Section 6 below. 
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cured. This outcome is also shown to be consistent with the facts emphasized in the “industry 

view”: low rates of identity theft and a prevalence of unsophisticated fraud. The model frame-

work is then used to analyze the impact of various approaches to regulation. 

In summary, the model developed here allows for explicit calculation of the efficient lev-

els of data accumulation and data security, and for evaluation of policies meant to attain effi-

ciency. More generally, it illustrates how any such calculation should balance the costs of data 

misuse against the gains afforded by the relaxation of anonymity.  

2. Institutional Background 

 This section provides a brief overview of the phenomenon of identity theft and its rela-

tionship to data security. Recent surveys are given in Schreft (2007) and Anderson et al. (2008). 

 It is constructive to begin by defining terms. Identity theft can take many forms in prac-

tice. The Federal Trade Commission (Synovate 2007) divides identity theft into two broad cate-

gories: existing-account fraud and new-account fraud. Existing-account fraud occurs when a 

thief steals an existing payment card or similar account information (e.g., a checking account 

number) and uses these to purchase goods and services. Traditionally, new-account fraud occurs 

when a thief uses someone else’s PID to open a new account. As will be clear below, new-

account fraud is the type of identity fraud that occurs in the model.7 

 There are no comprehensive statistics on the prevalence of identity theft, or definitive 

estimates of its cost. In a widely cited survey, the Federal Trade Commission (FTC) estimated 

that in 2006, 3.7 percent of the U.S. adult population fell victim to some form of identity theft, at 

a cost of roughly $16 billion (Anderson et al. 2008). These figures are likely underestimates, 

                                                 
7 The term “new-account fraud” includes an increasingly prevalent type of fraud, which is fictitious or synthetic 
identity fraud. In this type of fraud, a thief combines information taken from a variety of sources with invented 
information to create a new, fictitious identity. By one recent estimate, more than 80 percent of all new-account 
identity theft has occurred using synthetic identities (Coggeshall 2007). 
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however, because they omit certain forms of identity theft as well as many of its indirect costs. 

Adjusting for some of these effects easily quadruples the dollar losses (Schreft 2007). 

 A data breach occurs when an unauthorized party is able to access personal data that has 

been collected by an organization (e.g., business or payment service provider). Data breaches can 

facilitate either existing-account fraud (as when credit-card information is stolen) or new-account 

fraud (as when PID is stolen).8 There is no definitive estimate of how many cases of identity 

theft have resulted from data breaches. Certainly, data breaches are numerous and increasing: for 

example, the information-security website Attrition.org lists 553 reported data breach “incidents” 

for 2008, leading to the compromise of 83 million records of personal data, as compared to 11 

reported incidents and 6 million compromised records in 2003. A data breach does not necessar-

ily result in identity theft, as data may be stolen without being used for fraudulent purposes. 

Nevertheless, there seems to be widespread agreement that data breaches promote identity theft. 

The United States Government Accountability Office (2007), for example, examined 24 data 

breaches between 2000 and 2005 in which large amounts of data were compromised, and was 

able to conclusively link four of these to subsequent outbreaks of fraud. 

Also, identity theft can occur without data breaches. In consumer surveys, victims of 

identity theft who know how their information was stolen commonly attribute their loss to low-

tech channels such as: lost/stolen wallets (e.g., 33% of cases reported in Javelin 2008), fraud by 

acquaintances (17%), or stolen mail (6%). But there is also evidence that a significant proportion 

of identity theft can be attributed to inadequately secured commercial data: Gordon et al. (2007) 

examine 274 cases of identity theft prosecuted by the Secret Service over 2000-2006, and find 

that 50% of these resulted from the compromise of data at a business. 

                                                 
8 Actually, because many credit-card issuers will open accounts for people who present an existing credit card, a 
data breach involving the theft of credit-card information also contributes to new-account fraud. 
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The costs of identity theft must be weighed against the benefits provided by the availabil-

ity of PID, which lies at the heart of credit-based systems of exchange. There are no definitive 

estimates of these benefits, but the sheer volume and increasing popularity of services such as 

card-based payments indicates that these are substantial. For example, card transactions in the 

U.S. totaled more than $3 trillion in 2006 (Bank for International Settlements 2008). 

3. Environment  

3.1 Basic features 

 The model economy exists in continuous time and consists of a continuum of risk-neutral 

agents. Associated with each agent is a unique fixed vector of personal data known as the agent’s 

identity. This vector has effectively infinite dimension. 

Agents are divided into groups AG  and BG  of unit measure, where A BG G∩ =∅ . All 

trade occurs among agents in the same group. Within each group, agents are congenitally subdi-

vided into legitimate agents and frauds (i.e., identity thieves). F denotes the fraction of frauds in 

the population. Legitimate agents and frauds have the same consumption preferences, but differ 

in two respects. First, legitimate agents are able to produce tradable goods, while frauds lack this 

ability. Second, frauds are sometimes able to impersonate other agents, while legitimate agents 

cannot.9  An agent’s identity, group, and legitimacy are all private information until revealed 

through costly verification and/or observation of the agent’s behavior. 

 Goods are traded within groups through random matches of buyers and sellers.10 There 

are no double coincidences and no repeated matches, and money is not available, so trade can 

                                                 
9 The environment studied can be generalized to allow for the endogenous choice of agents to specialize in fraudu-
lent activity; see Kahn and Roberds (2008). 
10 Additional details of the model are given in Appendix A. 
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only occur using some form of multilateral credit.11 Any agent with access to credit derives a 

flow utility 0u >  from acquisition of other agents’ goods. At some point during each unit time 

interval, agents may be called upon to supply up to a unit measure of their endowment good to 

other agents. Legitimate agents can perform this action at a disutility of c per unit, where 

0u c> > . Whether or not an agent has supplied goods is not observable until the next discrete 

date 0,1,2,n = …  , at which point it becomes public information. Information on agents’ con-

sumption behavior is not available without the application of a specific technology, which is 

described below. 

Credit-based exchange in the model requires arrangements for sharing two kinds of in-

formation: (1) sufficient knowledge of agents’ transaction histories (as in, e.g., Kocherlakota 

1998) and (2) sufficient knowledge of agents’ identities, in order to associate would-be consum-

ers with histories (as in Kahn and Roberds 2008). These arrangements are modeled as clubs for 

sharing this information, which we visualize as credit card networks.12 The analysis will consider 

the case where one club exists for each group of agents.13 

To encompass the possibility of identity theft via data breaches, the environment allows 

for turnover in club membership. Turnover in membership gives each club an incentive to retain 

data on its members’ identities, so as to distinguish existing club members from new applicants. 

However, the presence of such stored data creates opportunities for data thieves. 

To incorporate turnover, agents in the model consist of stochastically lived overlapping 

generations. At each discrete date 0,1,2,n = … , a randomly selected subset of agents dies and is 

                                                 
11 The model could be modified to allow agents to transact with cash as well as with credit. This generalization is 
explored in Camera and Li (2008), Martin, Orlando, and Skeie (2008), and Monnet and Roberds (2008). 
12 Clubs are a natural arrangement given the nonrival nature of the good (information) that is to be allocated (Varian 
1998). In practice, such information is managed through the interaction of many parties, including card issuers, 
credit bureaus, and transaction processors. Data sharing among these parties is subject to public-goods problems 
(Varian 2004). The analysis below abstracts from such problems in order to focus on spillover effects. 
13 Appendix D presents an extension of the model which allows for endogeneity in club size. 
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replaced by newborn agents. Newborn agents have unique identities but are otherwise indistin-

guishable from the agents they replace. The measure of deaths and births is given by 1 β− , 

where 0 1β< < , i.e., β serves as a discount factor in agent’s decisions. The deaths of agents and 

the identities of the dead immediately become public information, so only the living are potential 

victims of identity theft. 

3.2 Benchmark: exchange with costless identification 

Consider the case where information on agents’ identities can be costlessly assembled 

and stored, so agents can be perfectly identified if they so desire. Agents from each group form 

two clubs at time 0t = . An agent joining club i, ,A Bi G G= , reveals his identity to the club, and 

the agent receives an uncounterfeitable credit card that signals his membership in the club. The 

card can be authenticated by all club members at no additional cost, and allows its holder to 

enjoy the consumption flow u. At each discrete date n, the club learns whether its members have 

produced goods during the preceding unit interval. Producers remain in the club; nonproducers 

are subject to expulsion and to a nonpecuniary penalty (e.g., stigma or criminal sanctions) equal 

to X u>  utils. Subsequently, 1 β−  club members die and membership is opened to newborn 

agents.14 

For this case, it is straightforward to show15 that exchange through clubs is self-

sustaining: all legitimate agents in the model have an incentive to join the appropriate club and 

remain in it over their lifetimes, while all frauds are excluded. Legitimate agents’ expected value 

of continued club membership at each discrete date n is 

 [ ]( )(1 ) /V u c F r≡ − − , (1) 

                                                 
14 See Boyd and Prescott (1987) for an analysis of clubs with a similar structure. 
15 See Appendix A. 
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where the clubs’ “discount rate” 1 1r β −= − . (Voluntary) identification of consumers is key to the 

viability of the clubs: absent identification, the payoff to someone who consumes and never 

produces is 

 [ ](1 ) /u F r V− > , (2) 

i.e., shirking always beats working, so that the clubs collapse. In general, exclusion of frauds is 

also necessary for the clubs to exist. If all frauds are admitted to the clubs and provided with 

consumption goods, then the value of legitimate agents’ membership falls to 

 [ ](1 ) /u F c r− −  , (3) 

which is negative for F sufficiently close to one. 

3.3 Exchange with costly identification 

 More generally, reliable identification of agents requires the use of a costly technology. 

Clubs accomplish identification by collecting a subset of each agent’s identity. For this model, 

the value of such information, and the costs of managing it, can be represented by the amount of 

identifying information disclosed, not by the type of information. The amount of information 

disclosed is given by ,i nd , referring to the number of elements an agent must disclose from his 

identity vector to be identified by club i at discrete dates n. For analytical convenience ,i nd  is 

taken to be a continuous variable, i.e., ,i nd +∈\ . Each club compiles and maintains a database 

containing the identifying information disclosed by its members. The cost to the two clubs of 

merging their databases is assumed to be prohibitive. 

Identity verification has two costs. The first cost is a fixed one-time cost of K  utils, 

which is incurred when an agent initially joins club i and is borne pro-rata by all legitimate club 

members. The second cost is a per-discrete-period, per-member cost of processing and maintain-
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ing the data record ,i nd  for each club member. This cost is given by ,i nkd , where 0k >  and is 

also borne by all legitimate club i members. Note that the parameters K  and k  reflect physical 

costs but perhaps also intangible costs associated with the loss of privacy stemming from identity 

verification. Also note that ,i nd  can vary across discrete periods. That is, a club can vary the 

amount of identifying data it requires from its members from one period to another. Once a club 

has collected data at discrete dates 0,1,...n = , the data must be maintained until date 1n +  if the 

club is to avoid paying the initial identity verification cost K on all members at time 1n + .16 

Following the initial verification of an agent’s identity, the agent receives an uncounter-

feitable credit card. Credit cards are issued at zero additional cost. Because credit cards are un-

counterfeitable, identity theft in the model does not involve the cloning of existing cards or use 

of existing card numbers: there is no existing-account fraud. Rather, all identity theft involves the 

opening of a new credit-card account in the name of an apparently legitimate agent.17 

Credit cards issued at discrete dates n have a virtual expiration date of 1n + . That is, at 

discrete date 0n > , each club compiles a list of agents who have supplied goods during the 

preceding interval [ 1, )n n− . Members who have not supplied goods are revealed as impersona-

tors (frauds) and removed from the club, while those who have supplied goods continue their 

membership. Apart from exclusion from the club, no penalties can be applied to impersonators 

because their real identities are unknown.18 

                                                 
16 Data that has been retained for one period and is not useful for identification can be costlessly destroyed by the 
clubs. A data destruction technology could be introduced at the cost of some additional complexity. 
17 The model could be extended to allow for existing-account fraud. Formally, existing-account fraud is quite similar 
to counterfeiting, which has been analyzed in the money literature (see section 6 below). 
18 One can conceive of other arrangements for trade within the club. For example, each producer could verify each 
buyer’s identity independently, but this would require that each buyer’s verification cost be repeatedly incurred 
(infinitely often). Or, the club could verify members’ identities at the beginning of each discrete period, issue “no-
name” credit cards valid for only one period, and dispose of all identifying information on its members. In what 
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3.4 The prevalence of identity theft 

Identity theft occurs when a fraud gains access to a club by convincingly impersonating a 

legitimate agent. Reflecting the distinctions in the policy literature, identity theft in the model 

can occur through “high-tech” methods (i.e., involving data breaches) or “low-tech” methods 

(without data breaches). High-tech methods require less effort but more skill, i.e., a successful 

breach lowers the effort cost of fraud. Because the submission of duplicate PID of an existing 

club member would be automatically revealed as fraudulent, data observed in a breach of club j’s 

database is always used to gain access to club i. 

The probability of a successful data breach depends on how well the target club secures 

its database. Suppose that club i maintains member data , 1i nd −  over the interval [ 1, )t n n∈ − . The 

club then chooses a security variable , 1 0i ns − ≥  that determines, for the next discrete date n, the 

likelihood of a data breach, given the technical skills of would-be data thieves. 

More specifically, the variable , 1i ns −  is the skill threshold required to access club i’s data-

base at discrete date t n= . The distribution of technical skills s within the population of frauds is 

time invariant, and is given by the probability distribution function ( )sΦ , where ( ) 1sΦ <  for 

s < ∞ . Intuitively, by setting a higher skill threshold, the club can lower the proportion of the 

population of frauds that can potentially steal the club’s data. Increasing the skill required for 

data breaches brings with it increased costs, however. In particular, adopting skill threshold , 1i ns −  

results in a cost to all legitimate members of club i of disutility , 1i ns −A  incurred at discrete date 

1n − , where 0>A . Thus, the possibility of a breach is never completely eliminated. 

Frauds lacking the technical skills for data theft can attempt to obtain the necessary data 

                                                                                                                                                             
follows it is assumed that the value of the initial verification cost K is sufficiently high relative to other costs in the 
model that the use of anonymous credit cards is not an attractive option. 
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for impersonation through other, “low-tech” means. Compiling the data ,i nd  necessary for entry 

into club i at discrete date n involves a utility cost 

 ,i ndε , (4) 

where the “effort cost” 0ε > . ε is assumed to have a time-invariant distribution ( )εΓ  over the 

population of frauds, and Γ does not depend on the security variables s. 

Frauds with sufficient skills may reduce their effort costs by stealing data. If a fraud of 

group i breaches club j’s date 1n −  database, and obtains data , 1j nd − , then a fraction (0,1)η∈  of 

this data can be applied to gain membership to club i. In this case, the net amount of data the 

fraud must synthesize to gain access to club i is 

 { }, , 1max ,0i n j nd dη −− , (5) 

and his net effort cost is given by 

 { }, , 1max ,0i n j nd dε η −− . (6) 

Under this specification, spillover effects arise due to the overlap η between the kinds of infor-

mation in various databases of personal identifying data. The analysis below will concentrate on 

cases where 1η → , i.e., where this overlap is substantial, though still imperfect.19 

 To summarize, the prevalence and type of identity fraud committed in club i during 

[ , 1)n n +  depends on three factors: (1) the amount of data ,i nd  needed to gain access to club i at 

discrete date n, (2) the skill threshold , 1j ns − specified by club j at discrete date 1n − , and (3) the 

amount of club j’s data obtainable through a breach at date n, , 1j ndη − . More specifically, club i’s 

equilibrium rate of identity theft from unskilled frauds over [ , 1)t n n∈ +  is given by 
                                                 
19 This expresses the idea that databases of PID tend to contain many common elements such as name, address, birth 
date, social security number, etc. Requiring η to be strictly less than unity ensures that positive effort is required for 
impersonation in equilibrium. 
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⎛ ⎞−
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⎝ ⎠
. (7) 

Given symmetry between the clubs, club i’s equilibrium rate of identity theft from skilled 

frauds over [ , 1)t n n∈ +  is given by 

 ( ), , 1
, , 1

(1 )1 ( ) .S
i n j n

i n j n

u FF s
d d

ρ
η−

−

⎛ ⎞−
≡ −Φ Γ⎜ ⎟⎜ ⎟−⎝ ⎠

 (8) 

Club i’s total rate of identity theft over [ , 1)n n +  is given by , , ,
U S

i n i n i nρ ρ ρ≡ + . 

3.5 The costs of identity theft 

 In addition to identity verification costs, impersonation of legitimate agents by frauds 

imposes three other types of costs on legitimate club members. All legitimate agents are risk 

neutral and share the same preferences, so there is no loss of generality in assuming that these 

costs are equally distributed across legitimate club members. 

The first cost is simply the cost of providing goods to frauds, which is given by c utils per 

period, per identity theft. In principle, this cost derives from a transfer from legitimate agents to 

frauds, but is nonetheless economically meaningful because widespread fraud can undermine the 

viability of the card networks (see expression (3)). In practice this cost is considerable. For ex-

ample, the FTC survey (Synovate 2007) estimates the median value of goods obtained through 

new-account fraud to be $1,350 per incident of identity theft. 

The second type of cost is the cost of resolving an identity theft. That is, discovery of an 

impersonator in club i imposes a resolution cost of L on the club, which represents both a social 

and private cost. L may include physical costs, loss of leisure time, and inconvenience. This cost 

is more difficult to measure but nonetheless significant. In the FTC survey, the median amount 

of time spent by a consumer to resolve a case of new account fraud was 10 hours, equivalent to 
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hundreds of dollars in monetary value. Another example is given by Douglas (2008), who reports 

that it costs a card issuer about $25 to reactivate any compromised card account. Other, less 

readily quantifiable costs of resolving identity theft are catalogued by Anderson et al. (2008), and 

can include harassment of victims by debt collectors, denial of utility service, and the costs of 

deflecting civil lawsuits and criminal investigations. 

 The third type of cost results only when identity theft results from a data breach, i.e., 

from skilled identity theft. When a club’s data is stolen and used to gain fraudulent access to the 

other club, the members of the first club are subject to an additional resolution cost, or “breach 

cost” 0B > . Empirically, B is likely smaller than c or L, but still nonnegligible. A report by 

Ponemon Institute (2006) offers real-world examples of such costs. These include the costs of 

notifying people whose data has been compromised ($13 per data record breached), labor costs 

(“lost productivity”, $30 per record), and the costs of managing potential legal liabilities ($11).20 

3.6 Clubs’ objectives and steady-state equilibrium 

 The analysis below will focus on steady states. A steady-state allocation in this economy 

consists of two ordered pairs { } 1,2
( , )i i i
d s

=
, where id  gives the data length and is  gives the skill 

threshold chosen by club i. Taking into account all costs, and adjusting for the prevalence of 

unskilled and skilled identity theft, club i’s total per-period cost of identity theft in steady state is 

 

( )

( ) ( ) ( ) ( )

1
(1 ) ( ) ( )

1 1
1 ( ) ( ) 1 ( ) ,

i i i j
i

j i
i j j i

u F
C K kd s F s c L

d

u F u F
F s c L F s B

d d d d

β

β
η η

⎛ ⎞−
= − + + + Φ Γ +⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞− −

+ −Φ Γ + + −Φ Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

A

 (9) 

                                                 
20 Typically these costs represent the costs of legal safeguards against potential civil and criminal actions stemming 
from a breach, rather than reallocations of fraud losses incurred by other parties. Reallocations of fraud losses 
through the legal system are studied in Section 5 below. 
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i.e., the sum of data costs, plus the costs of unskilled ID theft, plus the costs of skilled ID theft. 

Each club i chooses ( , )i id s to maximize the continuation value of legitimate club membership, 

which in steady state is given by 

 f i
i

CV V
r

≡ −  . (10) 

Evidently, this is the same as minimizing iC . A steady-state allocation { }( *, *)d s  is a symmetric 

equilibrium if ( , ) ( *, *)i id s d s=  minimizes iC  when club j chooses ( , ) ( *, *)j jd s d s= .21 

 Steady-state equilibria will be compared to allocations chosen by a planner. The planner 

operates under the same informational constraints as the clubs in the decentralized arrangements, 

but is able to coordinate the choice of d and s across clubs. The planner’s objective is to mini-

mize the steady-state costs of identity theft to legitimate agents, including all costs resulting from 

data breaches, i.e., the planner chooses ( , )d s  to minimize22 

 

( )

( ) ( )

1
(1 ) ( ) ( )

1
1 ( ) ( ) .

(1 )

p

u F
C K kd s F s c L

d

u F
F s c L B

d

β

β
η

−⎛ ⎞
= − + + + Φ Γ +⎜ ⎟

⎝ ⎠
−⎛ ⎞

+ −Φ Γ + +⎜ ⎟−⎝ ⎠

A
 (11) 

4. Analysis of equilibria 

 This section considers steady-state equilibria for parametric specifications for Φ and Γ. In 

particular, frauds’ skill endowments s are specified to follow an exponential distribution 

( )sΦ with hazard rate /(1 )φ ′≡ Φ −Φ , and the distribution ( )εΓ  of frauds’ effort costs is speci-

                                                 
21 In addition, existence of equilibrium requires that certain incentive conditions be satisfied in order to guarantee 
legitimate agents’ participation in the clubs (given in Appendix A). These can be shown to hold under mild paramet-
ric restrictions (given in Proposition 1 below). 
22 The allocation chosen by the planner represents a constrained-efficient allocation, since the planner places no 
weight on the utility of either frauds or the initial generation of legitimate agents. “Golden-rule” welfare criteria 
such as (11) are widely employed in overlapping generation settings but of necessity also arbitrary. 
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fied as a uniform distribution, normalized to [0,1]U . These specifications allow for unique equi-

libria that can be expressed in closed form. 

 To develop intuition for the model, we consider some particular cases. 

4.1 Case 1: All identity theft stems from data breaches 

 Suppose that neither club secures its data so that, in effect, all frauds are skilled, i.e. 

0Φ = . For this case, clubs’ rate of identity theft is not determined by the amount of data they 

collect, but instead by the amount of additional data an ID thief must come up with (beyond that 

obtainable through a breach) in order to gain access to a club. That is, from (8), club i’s equilib-

rium rate of ID theft is determined by i i je d dη= − . Changing variables and differentiating iC , 

club i’s first-order condition is 

 2 2

(1 )( ) (1 )

i j

uF F c L uF F Bk
e e

ηβ− + −
= + . (12) 

Each club sets the marginal benefit of fraud deterrence through PID collection [LHS(12)] equal 

to its marginal cost [RHS (12)], which is the sum of the physical/intangible cost k and the cost of 

increased vulnerability to data breaches. Best responses are given by 

 
2

2

(1 ) j
i

j

uF F e
e

ke uF Bηβ
−

=
+

. (13) 

Since RHS (13) is strictly increasing, the unique solution for *d  is 

 1 (1 )( )*
1

uF F c L Bd
k

ηβ
η

− + −
=

−
 (14) 

under the empirically plausible restriction (see section 3.5 above) that c L Bηβ+ > . Quantity *d  

may be contrasted with the unique solution to the planner’s problem, which from (11) is 
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 1 (1 )( )
1p

uF F c L Bd
k

β
η

− + +
=

−
. (15) 

Comparing (14) and (15), it follows that * pd d>  when 

 (1 ) ( )r c L Bη+ + > , (16) 

i.e., when breach costs B are less than the costs to the other club of increased ID theft stemming 

from the breach c L+ , adjusted for “data overlap” η and present value. Note that condition (16) 

becomes increasingly plausible as η goes to 1. 

 This case of the model offers a classic example of a negative production externality: 

when (16) holds, the discrepancy between private and social costs results in overcollection of 

PID in equilibrium. Not surprisingly, overcollection of data increases data breaches relative to 

the planner’s allocation, consistent with the “popular wisdom” discussed in the Introduction. 

However, from (8), this discrepancy also lowers the rate of identity theft ρ, consistent with 

claims in the industry literature. Inefficiency of the noncooperative equilibrium does not stem 

from too much identity theft, but instead from too much data being collected. Each club would 

like to compile less data on its members (i.e., reduce id ) but, given the actions of the other club, 

cannot do so without encouraging high rates of fraud. 

 The spillover parameter η is a key driver of the extent of this inefficiency. Under condi-

tion (16), both *d  and pd  are increasing in η, but as stolen data becomes increasingly useful for 

ID theft, i.e., as 1η → , the clubs acting independently require ever larger multiples of the 

amount of data that a planner would collect, i.e., ( / *) 0pd d → . 
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4.2 Case 2: Fixed proportions of skilled and unskilled identity thieves 

Now consider a slightly more general case with fixed proportions of skilled and unskilled 

identity thieves within the population of frauds. Differentiating iC  with respect to id  yields the 

first-order condition 

 

( )
2 2

2

1 ( )( )
(1 ) ( ) ( )

( )

1 ( )(1 ) ,
( )

jj

i i j

i

j i

ss
uF F c L c L

d d d

sk uF F B
d d

η

βη
η

⎡ ⎤⎛ ⎞−ΦΦ⎛ ⎞
⎢ ⎥⎜ ⎟− + + +⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞−Φ
= + − ⎜ ⎟⎜ ⎟−⎝ ⎠

 (17) 

where again LHS (17) represents club i’s  marginal benefit of increased data collection (reduc-

tion in unskilled and skilled ID theft) and RHS (17) represents its cost (physical/intangible cost 

plus data breach vulnerability). Fixing ( ) ( )i js sΦ = Φ = Φ , and solving as above for equilibrium 

data length *d  yields a unique solution 

 
( )2(1 ) ( )(1 ) (1 )( )1*

1
uF F c L c L B

d
k
η ηβ

η
− Φ + − + −Φ + −

=
−

, (18) 

when c L Bηβ+ > . For the planner’s problem, differentiating pC  with respect to data length d 

yields 

 ( )( )
( )2 2

1 ( )( ) ( )(1 )
1

c L B sc L suF F k
d d

β
η

⎡ ⎤+ + −Φ+ Φ
− + =⎢ ⎥−⎣ ⎦

, (19) 

where again marginal benefits (all internalized by the planner) are displayed on the left and 

marginal costs on the right. Solving (19) for d when ( )sΦ = Φ  yields 

 ( )(1 ) ( )(1 ) (1 )( )1
1p

uF F c L c L B
d

k
η β

η
− Φ + − + −Φ + +

=
−

. (20) 
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 Using (18) and (20), it can again be shown that * pd d>  under condition (16). As in case 

1, inefficiency of the equilibrium allocation stems from overcompilation of PID. A noteworthy 

difference between case 1 and case 2, however, is in the quantitative manifestation of this ineffi-

ciency: equilibrium rates of unskilled and skilled ID theft (from (7) and (8)) are both below those 

in the planner’s allocation. Which means, depending on the value of Φ , that the principal effect 

of the overcollection of PID may not be a reduction in skilled identity theft—the underlying 

source of the inefficiency—but instead a reduction in identity theft by the unskilled. In other 

words, inefficiency of the symmetric equilibrium persists, even when a large proportion of iden-

tity theft does not involve data breaches. 

4.3 Case 3: Endogenous skill thresholds 

In general, the clubs can limit the impact of skilled identity theft through their choice of 

data security, i.e., each club i minimizes its costs iC  by setting both id  and the security level of 

its data, given by the skill threshold is . Club i’s first-order condition in id  is given by (17); its 

first-order condition in is  is 

 
( )

(1 ) ( )
1 i

i

BuF F s
d
β

η
⎛ ⎞

′− Φ ≤⎜ ⎟⎜ ⎟−⎝ ⎠
A , (21) 

with equality for 0is > , i.e., the club increases security as long as its marginal benefit in terms of 

reduced breach costs [LHS (21)] exceeds its marginal cost A . Likewise, from (11), the planner’s 

first-order conditions in d and s are given by (19) and 

 
( )

( )(1 ) ( )
1

c L BuF F s
d

η β
η

⎛ ⎞+ + ′− Φ ≤⎜ ⎟⎜ ⎟−⎝ ⎠
A , (22) 
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with equality for 0s > . Comparing (21) and (22), note that for a given data length d, the planner 

internalizes the benefit ( )c Lη +  of each club’s data security for the other club, while in equilib-

rium the individual clubs do not. 

 One possibility is that neither club opts to secure its data in equilibrium. Data length *d  

is then set as in case 1 above. Substituting (14) into (21), such an equilibrium exists if 

 (1 )uF F kB
c L B

β φ
ηβ
−

<
+ −

A , (23) 

i.e., if the marginal payoff to security (proportional to the hazard rate φ of the skill distribution) 

is always below its marginal cost. Clearly (23) is satisfied for 0φ >  sufficiently small. 

The discussion in the rest of this section focuses on the case where the clubs set a positive 

security level in equilibrium. Sufficient conditions for existence and uniqueness are given in the 

following proposition (proofs are in Appendix B): 

Proposition 1. A unique symmetric steady-state equilibrium ( *, *)d s  with positive security effort 

( * 0s > ) exists when 

a) the hazard rate φ of the skill distribution is sufficiently large; 

b) the breach cost B is less than the other costs of identity theft, adjusting for present 

value, i.e., (1 )( )B r c L< + + ; 

c) information and data security are sufficiently cheap (costs , , 0K k >A  are small); 

d) the clubs’ discount rate ( 0r > ) is sufficiently small. 

Corollary to Proposition 1. Under the same conditions, there exists a unique solution to the 

planner’s problem ( , )p pd s  with 0ps > . 

Solutions for equilibrium and optimal allocations are more complicated than in the previ-

ous cases (see Appendix B), but can be shown to obey the following properties: 
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Proposition 2. Under the conditions of Proposition 1, 

a) *s  increases with data collection costs k, the hazard rate φ, and with breach costs B 

as 1η → , but decreases with ID theft costs c and L, security costs A , and the discount 

rate r as 1η → ; 

b) ps  increases with k, φ, c, L, and B, and decreases with A  and r; 

c) *d  increases with c, L, A , and r, and decreases with B, k, and φ; 

d) pd  increases with c, L ,and A , decreases with k and φ; and does vary with r or B. 

As with the previous two cases, disparities between equilibrium and optimal allocations 

grow as stolen data become more useful for identity theft: 

Proposition 3. Under the conditions of Proposition 1, 

a) *s  and ps  are increasing in η; 

b) As 1η → , *s s→ <∞  and ps →∞ , whence * ps s< . 

Proposition 4. Under the conditions of Proposition 1, 

a) pd  does not vary with η, and *d  is increasing in η  as 1η → ; 

b) As 1η → , *d →∞ , whence * pd d> . 

Propositions 3 and 4 offer some instructive comparisons with cases 1 and 2 above. As 

with the previous cases, as data spillover η increases, so does the potential for skilled identity 

theft. Although the clubs could respond by better securing their data against breaches, in equilib-

rium they mainly respond by collecting more PID, as in cases 1 and 2. Unlike cases 1 and 2, 

however, the planner does not try to counter increased spillover by collecting more data, but 

instead only increases data security. That is, with endogenous security, the amount of data col-
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lected d and data security s function as substitutes in the reduction of identity theft, and this 

substitution drives an even sharper wedge between equilibrium and efficient allocations. 

The clubs’ tendency to substitute data for security also shows up in comparisons of iden-

tity theft rates. These are given as 

Proposition 5. Under the conditions of Proposition 1,  

a) The rate of skilled identity theft Sρ is greater in the symmetric equilibrium than for 

the planner’s allocation; 

b) As 1η → , the rate of unskilled identity theft Uρ  is less in the symmetric equilibrium 

than for the planner’s allocation; 

c) For / kA  bounded, as 1η →  the total rate of identity theft ρ is less in the symmetric 

equilibrium than for the planner’s allocation. 

Proposition 5(c) shows that, as under cases 1 and 2, inefficiency of the equilibrium may 

again be consistent with low rates of fraud. Identity theft rates are lower in the symmetric equi-

librium than in the planner’s allocation as 1η → . However, Propositions 5(a) and 5(b) show that, 

in contrast to the previous cases, suppression of fraud is not uniform but is concentrated in the 

unskilled mode of identity theft. Thus, with endogenous data security, apparent “success” in 

combating unskilled identity theft can be a symptom of failure to deter its skilled counterpart. 

5. Attaining efficiency 

 This section considers three types of policies that have been proposed as remedies for 

inefficiencies stemming from data breaches: (1) reallocations of the costs of data breaches 

through the legal system; (2) mandating improved data security; and (3) regulatory limits on the 

amount of PID collected. 

The first approach would increase each network’s civil liability for a data breach, i.e., in-



 

22 

crease each network’s breach costs to B B π′ = + , where 0π >  represents the network’s liabil-

ity.23 In the simplified cases 4.1 and 4.2 above, efficiency can be restored by choosing a level of 

liability that causes each club to internalize the full costs of its data collection, i.e., by setting 

 * (1 )( ) ( / )r c L Bπ π η= ≡ + + − , (24) 

Note that if B in (18) is replaced with *B B π′ = + , then it follows from (20) that * pd d= . Also 

note that club i’s liability for a data breach *π  is bounded by the “actual loss” or “economic 

loss” suffered by club j, i.e., (1 )( )r c L+ + , which represents the practical limit of liability under 

the U.S. and Canadian legal systems (Chandler 2008). 

A policy of increasing liability for a data breach may not fare as well in case 4.3 with en-

dogenous security. When security effort is positive, it can be shown that imposing any liability 

up to *π  improves welfare (see Appendix C), but this type of policy cannot simultaneously 

correct incentives in d and s, and so does not restore efficiency. Intuitively, such a policy under-

corrects security incentives, causing the networks to continue to overcollect personal data. 

The second regulatory approach, which has been emphasized in the U.S., is to mandate 

minimum standards for data security, while allowing for private determination of how much PID 

should be collected.24 In addition to the obvious benefit of reducing the prevalence of data 

breaches, the model predicts that improved security also lessens incentives to collect PID. The 

optimal regulatory choice of security level cannot be expressed in closed form, but in numerical 

examples (see Table 1 below) it closely approximates the planner’s level of security ps . 

                                                 
23 In practice it can be difficult to enforce liability due to contracting limitations and uncertainty concerning the 
source of the stolen data (Schreft 2007 and Chandler 2008). The analysis here abstracts from such constraints. 
24 See Keitel (2008) for a discussion of applicable U.S. laws and regulations. 



 

23 

The third approach seeks to improve incentives by limiting the amount of data collected, 

while allowing the networks to choose their levels of security.25 It can be shown (see Appendix 

C) that the optimal limit on data collected corresponds to the level of data pd  that the planner 

would collect. Through the substitution effect outlined above, this also increases the clubs’ in-

centives to keep their data secure. 

To better gauge the efficacy of the various regulatory approaches, allocations were com-

puted numerically. Table 1 below displays some typical results. Parameter values for the exam-

ple are 

 10; 1; 0.9; 0.5; 0.9; 0.5; 0.1.c L B kβ φ η+ = = = = = = =A  

These parameter values satisfy the conditions for Propositions 1-5. They allow for con-

siderable data spillover ( 0.9η = ) and place a high value on privacy of PID ( )( / ) 5k =A . Breach 

costs B are small relative to the other direct costs of identity theft c L+ , reflecting the cost fig-

ures cited in Section 3.5. To facilitate comparisons, the normalizations 0K =  and (1 ) 1uF F− =  

are adopted. Columns 1 and 2 of the Table give the numerical values of the allocation ( , )d s  in 

each case; columns 3, 4, and 5 display the rates of unskilled, skilled, and total identity theft.26 

Allocations are welfare ranked according to the planner’s objective pC , displayed in column 6. 

<Insert Table 1 here> 

Allocations 1 and 2 in the Table illustrate the comparisons stated in Propositions 3, 4, and 

5. In symmetric equilibrium, the networks collect over four times as much data as in the efficient 

allocation, but skilled identity theft rises because security effort is also reduced. Unskilled iden-

                                                 
25 This regulatory approach has not been emphasized in the U.S. However, an example of this type of policy can be 
found in the European Union Privacy Directive, which restricts the collection of some types of personal data. 
26 Since uF(1-F) is normalized to one in the examples, the identity theft rates in column 4 of Table 1 do not repre-
sent gross identity theft rates, but instead represent the proportion of frauds who are successful at impersonation. 
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tity theft is suppressed in the symmetric equilibrium, but the welfare cost of this suppression is 

high since so much data is collected. Imposing liability *π  for data breaches (Allocation 3) 

increases security effort and reduces skilled identity theft, but does not fully correct incentives. 

Better results are obtained by constraining security to the efficient level (Allocation 4), which 

essentially replicates the planner’s allocation. Note, however, that this allocation requires almost 

complete eradication of data breaches. An apparently less stringent (though, in the U.S., least 

applied in practice) policy of constraining PID to the level preferred by the planner (Allocation 

5) does almost as well in welfare terms. Inevitably, there is no free lunch: Allocation 5 has the 

highest identity theft rate of any of the allocations studied. 

6. Relationship to the Literature 

The above analysis builds on models of exchange in search-theoretic environments. 

Many papers in this literature examine fraudulent transactions, including counterfeiting (Green 

and Weber 1996; Kultti 1996; Monnet 2005; Williamson 2002; Nosal and Wallace 2006; Caval-

canti and Nosal 2007) and various other types of fraud (Kahn et al. 2005, Camera and Li 2008, 

Kahn and Roberds 2008). What is new here is the consideration of an empirically significant 

type of transactions fraud stemming from the theft of identifying data. 

 The framework presented also draws on the literature on the economics of information 

security (Anderson and Moore 2006). Varian (2004) presents a game-theoretic model in which 

“system reliability” (e.g., deterrence of identity theft) is modeled as a public good within a net-

work of agents. Varian’s model is extended by Grossklags et al. (2008) to allow for individual 

insurance (e.g., security effort) against system failures. 

The environment above is similar to these models in the sense that knowledge of PID 

functions as a club good within each transactions network, supplying a network-wide level of 
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security against fraud. However, the focus here is on potential negative spillovers across net-

works: provision of the same good (data) that suppresses identity theft for one club increases the 

likelihood of identity theft for the other. Efficient management of personal data strikes a balance 

between within-club benefits and cross-club costs. 

7. Conclusion 

 This paper has presented a model in which identity theft arises endogenously and the 

concept of efficient confidentiality for personal identifying information (PID) has meaning. An 

allocation provides efficient confidentiality if the amount of PID shared for identity verification 

and the security of that data allow groups of agents to engage in beneficial transactions at mini-

mal cost. Consistent with the “popular wisdom,” inefficiencies can arise due to spillovers from 

one group of agents’ decisions along these dimensions to another’s. Inefficient outcomes are 

compatible with empirical patterns of identity theft that are emphasized in industry discussions. 

Interventions such as regulation of security practices can improve welfare, but the multidimen-

sional nature of the security problem means that attaining efficiency may be problematic. 

 These results have been developed in the context of a particular methodology, one that 

abstracts from many of the complexities of modern institutions. However, the basic idea behind 

this approach—that the compilation, exchange, and storage of PID, despite its risks and costs, 

can enable otherwise infeasible intertemporal exchanges of goods—can be generalized and 

should provide impetus for further research. 
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Table 1: Numerical comparison of allocations 

 1. PID 
collected  

d 

2. Secu-
rity level 

s 

3. Unskilled 
ID theft 
100* Uρ  

4. Skilled 
ID theft 
100* Sρ  

5. Total ID 
theft 

100*ρ  

6. Steady-
state costs 

pC  
1. Planner’s 
allocation 4.57 5.38 21.7 1.0 22.8 5.11 

2. Symmetric 
equilibrium 21.1 1.45 3.6 11.1 12.3 12.3 

3. Liability *π  
for data 
breaches 

11.1 4.49 8.9 0.9 10.1 7.01 

4. Regulated 
security 5.33 5.38 18.7 0.9 19.5 5.16 

5. Regulated 
data collection  4.57 2.98 20.8 11.1 31.9 5.87 
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Appendices 

 

Appendix A. Transactions in the model 

 

Background 

 Buyers and sellers are matched according to a simple search process. The search specifi-

cation is similar to that employed in standard first-generation search models (Kiyotaki and 

Wright 1989), but differs slightly in that it forces every possible type of match to occur within a 

finite time interval. This feature is convenient for the analysis above because it separates fraud 

risk (the risk that an agent engages in a transaction with no intent to repay, which is the focus of 

the paper) as opposed to credit risk (the risk that a known agent cannot repay). Under the match-

ing specification described below, an agent’s fraudulent intent is always revealed, once a certain 

amount of time has passed. Agents’ decision problems can then be reduced to a sequence of 

static decision problems, which reduces model complexity. 

 It is clear from credit industry discussions (e.g., Experian 2006 and Greene 2009) that the 

separation of fraud and credit risk represents an abstraction. In practice, there is always some 

overlap of these types of risk. Consider the case where a person applies for a credit card, receives 

the card, uses the card to make purchases, and then never makes a payment on the bill. Because 

the cardholder’s income, identity, and inclination towards fraudulent activity are not perfectly 

known to the card issuer, it is not always clear whether such a loss should be classified as a fraud 

loss or a credit loss. A cardholder may fraudulently claim to have been defrauded as a way of 

evading credit limits, further confounding credit and fraud risk. Nonetheless, it is customary 

within the credit industry to conceptually (and statistically) separate these two types of risk. A 
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consumer who applies for a credit card, for example, may be assigned an “identity risk score” as 

well as the more familiar credit score. 

 

Matching specification 

 Agents in the model are matched according to their types. It is convenient to think of an 

agent’s type as his “location,” although the model does not rely on geography. Within each 

group iG , types are distributed uniformly over the unit interval. There is a unit measure of agents 

of each type. Legitimate agents reside only on a measurable subset of locations Ω and frauds 

reside at locations cΩ , where ( )c Fμ Ω = . At the end of each discrete period, a randomly se-

lected subset of types vanish and are replaced with agents of the same type. The probability of 

replacement is β for both frauds and legitimate agents. 

Agents within each group wish to consume the goods produced by all other types of 

agents of the same group. Time begins at date 0t = . During the initial interval [0,1)t∈ , nondur-

able goods of type y, [0,1)y∈ , are available for purchase and consumption at time y, when each 

type-y agent can supply a unit measure of good y. Intuitively, potential consumers of type y y′ ≠  

“journey” to location y to purchase and consume good y. This process is repeated during subse-

quent unit intervals; i.e., at any time 0t ≥ , goods of type a b( )y t t t≡ −  are available for purchase 

and consumption, where a bt  denotes the integer part of t. 

Over all times 0t ≥ , production within group i imposes an instantaneous disutility of 

( )( )mc y t y dtδ −  on type-y agents, where 0c > , δ is Dirac’s delta function, and m is the measure 

of goods each agent supplies. For type- y′agents, where y y′ ≠ , time t consumption of one unit 

of a type-y good yields instantaneous utility u dt , where 0u c> > . At each time t, potential 
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consumers of type ( )y y t′ ≠  are randomly matched with one (and only one) producer within the 

same group of type ( )y t , with i.i.d. matching over time, so that all transactions are between 

agents without any previous contact. 

Trade among agents within a group is facilitated by a central authority (or “court”) with 

three limited and specific powers. First, the central authority can observe an agent’s actions as a 

producer (i.e., whether an agent has supplied goods during a time interval [0,1), [1,2), … ). 

Second, at discrete dates 0,1,2,n = … , the court can publicly announce the observed action. 

Third, the court can, when making this announcement, impose a nonpecuniary penalty of X > 0 

utils on an agent who has refused to supply a good, provided that the agent can be identified. 

 

Sustaining exchange with costless identification 

As described above, agents in each group form a transactions club. Club membership en-

titles the agent to a (flow) unit of a consumption good from any other club member in return for 

agreeing to provide his own type of good to other club members, at some point during each unit 

interval of time. At subsequent discrete dates 1,2,n = … , the center publicly announces the de-

fault of any club members who have not supplied goods and imposes penalty on nonproducers (a 

penalty of X utils) who are then excluded from the club. Membership in each club subsequently 

is opened to newborn agents. 

Suppose that all legitimate agents of group i and type y y′ ≠  decide to join club i, and 

that frauds do not. For a legitimate agent of type [0,1)y∈  in group i, the value of club member-

ship during the interval [ , 1)t n n∈ +  is given by  

 ( )( ) (1 )
y

u mc y y dy u F mcδ
′∈Ω

′ ′− − = − −∫  (25) 
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for 0,1,2,n = … . Market clearing requires 1m F= − . Hence, from (25), if all legitimate agents of 

group i join club i, then the steady-state value of club membership is given as V in equation (1). 

 Ongoing membership in the club requires that a type-y agent be willing to supply a unit 

measure of goods at time n y+ . This requires that the disutility of producing goods, combined 

with the disutility of the penalty X, be less than the value of continued club membership, i.e., 

 c X V− ≤ , (26) 

which is the same as 

 (1 ) (1 )F r c F u rX− + ≤ − + . (27) 

Under condition (27), no legitimate agent who has joined a club ever has an incentive to defect. 

If, in addition, 

 u X<  (28) 

no fraud ever has an incentive to join the club. Since c u< ,  (27) is implied by (28). It follows 

that under (28), an equilibrium exists in which all legitimate agents join the transactions club 

formed by agents in their group, and all frauds remain outside the club. 

 

Sustaining exchange with costly identification 

 When identification of agents is costly the steady-state value of a legitimate agent’s 

membership in club i is given by f
iV  in (10). In this case, f

iV  must satisfy three conditions for 

exchange to occur through the clubs. 

1. Individual rationality: a legitimate agent prefers joining a club to autarky. This requires 

 0 f
iV≤ ; (29) 

2. No defection: legitimate agents in each club have an incentive to produce goods for other 

club members. This requires 
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 f
ic X V− ≤ ; (30) 

Note that under (28), (30) is redundant given (29). 

3. No exclusion: a club has an incentive to admit new generations of members. This requires 

 f
iV V≤ , (31) 

where V  is the value of maintaining the club without admitting new members, i.e.,  

 2
2

0

( )(1 )(1 ) ( )(1 )
1

n

n

u c Fr V u c F β
β

∞

=

− −
+ = − − =

−∑ . (32) 

A steady-state allocation is incentive compatible if (29) and (31) are satisfied for both clubs. 
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Appendix B: Proofs of Propositions 1-5 

Proof of Proposition 1. 

The proof proceeds in four steps. First, we show that any solution ( , )d s  to first-order 

conditions (17) and (21) at equality represents a locally optimal and unique response by each 

club when the other club plays ( , )d s . Second, we first show that under the hypotheses of the 

Proposition, there is only one such solution ( *, *)d s . Third, we verify that there is no equilibrium 

with 0s = . Fourth, we show that ( *, *)d s  is incentive compatible. 

Step 1. First-order conditions for club i’s problem are given in (17) and (21). Second-

order conditions are given by 

 
( )

3 3

2 1 ( ) ( )2 ( )( )
0,

( )
jj

i i j

s c Ls c L
d d dη

−Φ +Φ +
+ >

−
 (33) 

 ( ) 0,i

j i

B s
d d
β

η
′′Φ

<
−

 (34) 

 
( ) 2

3 3 2

2 1 ( ( )2 ( )( ) ( ) ( ) 0.
( ) ( ) ( )

jj i i

i i j j i j i

s c Ls c L B s B s
d d d d d d d

β β
η η η

⎡ ⎤−Φ + ⎡ ⎤ ⎡ ⎤Φ + ′′ ′Φ Φ
+ + <⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (35) 

Conditions (33) and (34) are readily seen to hold when ( , ) ( , )i i j jd s d s= . Sufficient conditions 

for (35) to hold are symmetry and 2( )B c Lβ < + , which is implied by B c Lβ < + . 

Step 2. Rewrite (21) at equality as 

 ( )
( )

(1 ) 1 ( )
( ) .

1
uF F B s

d D s
β φ

η
− −Φ

= ≡
−A

 (36) 

Substituting (36) into (17), imposing symmetry, and rearranging gives the following quadratic 

equation 

 2
0 1 2( ) (1 ) 0Q z A z A z A z≡ − + + = , (37) 



 

36 

where 1 ( )z s= −Φ  and  

 0A c L= + , (38) 

 1 2(1 )
c L BA β η

η
+ −

=
−

, (39) 

 
2

2 (1 )
(1 )

BA kuF F β φ
η

⎛ ⎞
= − − ⎜ ⎟−⎝ ⎠A

. (40) 

From the above, 0(0) 0Q A= >  and 1 2(1) 0Q A A= + <  for φ sufficiently large. ( )Q z  therefore 

has a unique root * (0,1)z ∈ ; in particular, *z =  

( )
2

22 2

2

(1 ) ( ) (1 ) ( ) 4( ) (1 )
.

2 (1 )

Bc L B c L c L B c L c L kuF F

BkuF F

β φβ η η β η η

β φ

⎛ ⎞+ − − − + + + − − − + + + − ⎜ ⎟
⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠

A

A

 (41) 

Now define 

 ( )( )1 1( *, *) (1 *) , (1 *)d s D z z− −= Φ − Φ − . (42) 

By construction, ( *, *)d s  satisfies (17) and (21) under symmetry, and * 0s > . 

 Step 3. From the discussion in the text, there can be no equilibrium with 0s =  if (23) is 

violated, which occurs for 0φ >  sufficiently large. 

 Step 4. To show incentive compatibility, suppose initially that 0F = , so that i
fV V=  

Then the individual-rationality and no-exclusion conditions are clearly satisfied with strict ine-

quality for β sufficiently close to unity. Now, for 0F > , let , ,K k  and A approach zero; more 

specifically let ( , , )K k θ<A  where 0θ >  and i  is the sup norm. Then it can be shown that as 

0θ → , *d  and *s  as defined in (42) are bounded by 1/ 2θ −  and lnθ− , respectively. This, in 

turn, implies that f
iV V→  as 0θ → , as fraud rates and all costs of fraud deterrence are driven to 
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zero. Hence, by continuity, incentive compatibility must hold for , ,K k  and A  all positive and 

sufficiently small. 

 

Proof of the Corollary to Proposition 1. 

Begin by solving for ( , )p pd s . Rewrite first-order condition (22) as 

 ( ) ( )
( )

(1 ) ( ) 1 ( )
( ) .

1
uF F c L B s

d D s
η β φ

η
− + + −Φ

= ≡
−A

 (43) 

Substituting (43) into condition (19) and rearranging gives the following quadratic equation 

 2
0 1 2( ) (1 ) 0Q z A z A z A z≡ − + + = , (44) 

where 1 ( )z s= −Φ  and  

 0A c L= + , (45) 

 1 1
c L BA β

η
+ +

=
−

, (46) 

 ( ) 2

2

( )
(1 )

(1 )
c L B

A kuF F
φ η β

η
+ +⎛ ⎞

= − − ⎜ ⎟−⎝ ⎠A
. (47) 

Proceeding as in the proof of the Proposition, ( )Q z  has a unique root pz  in (0,1)  for φ suffi-

ciently large. In particular, pz =  

 
( )

2

2

(1 ) 1 1 4( ) (1 )

2 (1 ) ( )
p

c L kuF F

z
kuF F c L B

φη

φ η β

⎛ ⎞⎛ ⎞⎜ ⎟− + + + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
⎛ ⎞− + +⎜ ⎟
⎝ ⎠

A

A

. (48) 

The planner’s allocation is then given as ( )( )1 1( , ) (1 ) , (1 )p p p pd s D z z− −= Φ − Φ − . 

Second-order conditions for the planner’s problem are given by 
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 ( )
3 3

2( ) 1 ( )2( ) ( ) 0 ,
(1 )

c L B sc L s
d d

β
η

+ + −Φ+ Φ
+ >

−
 (49) 

 ( ) 0 ,
(1 )

c L c L B s
d d η

⎡ ⎤+ + + ′′− + Φ >⎢ ⎥−⎣ ⎦
 (50) 

 

( ) ( )

( ) ( )

4 2

2 2

4 2

(1 )( ) ( ) ( ) 1 ( )
2 ( ) ( )

(1 )

( ) ( )
0 ,

(1 )

c L s c L B s
c L B s

d

c L B s
d

η
η

η

η
η

− + Φ + + + −Φ⎡ ⎤
′′+ + Φ +⎢ ⎥−⎣ ⎦

′+ + Φ
<

−

 (51) 

which can be shown to hold for all positive d and s and hence for ( , )p pd s . 

 

Proof of Proposition 2. 

 (Sketch). Solutions for *d  and pd  are given in (59) and (60), respectively; solutions for 

*s  and ps  are given as 1φ−− ln(41) and 1φ−− ln(48). The Proposition follows from straightfor-

ward differentiation of these expressions. 

 

Proof of Proposition 3. 

Part (a). From (41) and (48), both *z  and pz  are clearly decreasing in η, so skill thresh-

olds *s  and ps  must be increasing in η. 

Part (b). From (41) and (48), as 1η → , 0pz →  while *z  converges to  

 
( )

2
2

2

4( ) (1 )
0 .

(1 )

Bc L B c L B c L kuF F
z

BkuF F

β φβ β

β φ

⎛ ⎞+ − + + − + + − ⎜ ⎟
⎝ ⎠≡ >

⎛ ⎞− ⎜ ⎟
⎝ ⎠

A

A

 (52) 

Hence, as 1η → , 1* (1 )s s z−→ = Φ −  while ps  diverges. 



 

39 

 

Proof of Proposition 4. 

To analyze pd  and *d , we first derive closed-form expressions for these quantities. To 

solve for *d , invert ( )D s  in (36) and substitute into first-order condition (17) to obtain the 

following condition in d: 

 2
0 1 2( ) 0R d R R d R d= + + = , (53) 

where 

 0 (1 )( )R uF F c L= − + , (54) 

 
2

1
( ) (1 ) ( )

(1 )
c L B c LR

B
βη η
β φ η

⎡ ⎤+ − − − +
= ⎢ ⎥−⎣ ⎦
A , (55) 

 2 .R k= −  (56) 

Similarly, to solve for pd , invert ( )D s  in (43) and substitute into the planner’s first-order 

condition (19) to obtain the condition 

 2
0 1 2( ) 0R d R R d R d= + + = , (57) 

where 0 0R R= , 2 2R R= , and 

 1R
φ

=
A . (58) 

Evidently, *d  and pd  may be expressed as (positive) roots of ( )R d  and ( )R d , respectively. In 

particular, *d  is given by 
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( ) 1

2

22 2
2

2 (1 )

( ) (1 ) ( )

,
( ) (1 ) ( ) 4 (1 )( )(1 )

k

c L B c L
B

c L B c L kuF F c L
B

η

β η η
φ β

β η η η
φ β

−− ×

⎡ ⎤⎛ ⎞⎛ ⎞ + − − − +
+⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥

⎛ ⎞⎛ ⎞ + − − − +⎢ ⎥+ − + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

A

A

 (59) 

and 

 ( )
2

12 4 (1 )( ) .pd k kuF F c L
φ φ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

A A  (60) 

Part (a). From (60), pd  does not depend on η. From (59), *d  grows as 

 ( ) 1 ( )(1 ) ,c L Bd k
B
β ηη

φ β
− ⎡ ⎤⎛ ⎞⎛ ⎞+ −

= − ⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

A�  (61) 

as 1η → , which is increasing in η for c L Bβ+ > . 

 Part (b). From (61), d →∞�  as 1η → , whence *d  also diverges. 

 

Proof of Proposition 5. 

(The calculations in this section simplify notation by setting (1 ) 1uF F− = .) 

Part (a). From first-order condition (21), the rate of skilled identity theft in the symmetric 

equilibrium is 

 ( )1 ( *)1 ( *)
*(1 ) ( *)

ss
d B s Bη β β φ

−Φ−Φ
= =

′− Φ
A A . (62) 

Similarly, the rate of skilled identity theft in the planner’s allocation can be calculated using (22): 

 
[ ]

1 ( )
(1 ) ( )

p

p

s
d c L Bη φ η β
−Φ

=
− + +

A . (63) 
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Comparing (62) and (63), skilled identity theft must be lower under the planner’s allocation. 

 Part (b). The rate of unskilled identity theft in the symmetric equilibrium is given by 

( *) / *s dΦ . From the Propositions 3 and 4, ( *) ( ) 0s sΦ →Φ >  and *d →∞  as 1η → , implying 

that unskilled identity theft is driven to zero as 1η → . 

The rate of unskilled identity theft under the golden-rule allocation is given by 

( ) /p ps dΦ . From the proof of the Corollary to Proposition 1, ( ) 1psΦ →  as 1η →  but pd  is 

positive and does not depend on η. Hence the rate of unskilled identity theft converges to 

1/ 0pd >  as 1η → . 

 Part (c). The calculations in parts (a) and (b) show that, as 1η → , ( *, *) ( , )p pd s d sρ ρ<  

iff 

 1 .
( )pB d c L Bφβ φ β

< +
+ +

A A  (64) 

Substituting for pd from the proof of the Corollary to Proposition 1, inequality (64) reduces to 

 
2

2 2

2 ,
( )4( )
c L

k B c L Bc L k
φ

βφ
+⎛ ⎞> ⎜ ⎟ + +⎝ ⎠+ + +

A
A A

 (65) 

which must hold for / kA  bounded and , 0k >A  sufficiently small. 
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Appendix C. Policy analysis 

(The calculations in this section simplify notation by setting (1 ) 1uF F− = .) 

 

1. Imposing liability for a breach 

 Suppose that penalty *π π≤  is in effect. Then in symmetric equilibrium, the clubs 

choose data length dπ , given by (59) where B B π′ = +  replaces B, and security level sπ , given 

by 1 lnφ−− [RHS(41)], where again B′  replaces B. From Proposition 2, 0dπ
′ <  and 0sπ′ >  for η 

sufficiently close to one, hence *d dπ <  and *s sπ > . 

 Using the Chain Rule, 

 p pC CdC d s
d d sπ ππ

∂ ∂′ ′= +
∂ ∂

 (66) 

where 

 ( )( )
( )2 2

1 ( )( ) ( )
1

pC c L B sc L sk
d d d

β
η

⎡ ⎤∂ + + −Φ+ Φ
= − +⎢ ⎥∂ −⎣ ⎦

 , (67) 

 
( )

( ) ( )
1

pC c L B s
s d

η β
η

⎛ ⎞∂ + + ′= − Φ⎜ ⎟⎜ ⎟∂ −⎝ ⎠
A  . (68) 

 
(cf. the planner’s first-order conditions (19) and (22)). But in equilibrium, dπ  and sπ  must sat-

isfy first-order conditions (17) and (21) where B is replaced with B′ , from which it can be shown 

that 

 0 and 0p pC C
d s

∂ ∂
≥ <

∂ ∂
 (69) 

for ( , ) ( , )d s d sπ π= . Since 0dπ
′ <  and 0sπ′ > , it follows from (66) that / 0dC dπ < . 
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2. Analysis of the regulator’s problem when the regulator only sets skill thresholds s 

 As in the proof of Proposition 1, let 1 ( )z s= −Φ . The problem of a regulator who only 

chooses s is equivalent to the following: minimize steady-state fraud costs pC  over (0,1)z∈ , 

i.e., minimize  

 ,
( )(1 ) ( ) ln

(1 )
c L z c L B z kd z

d d
β
η φ

+ − + +
+ + −

−
A  (70) 

subject to the clubs’ first-order condition (18), which we write as ( )d G z=  where 

 
1

2 21( ) ( )(1 ) (1 ) ( ) .
(1 )

G z c L z c L B z
k

η βη
η

⎡ ⎤= + − − + + −⎣ ⎦−
 (71) 

This regulator’s problem may be compared to the planner’s problem, which is equivalent to 

minimizing (70) over (0,1)z∈  subject to (20), which we write as ( )d P z=  where 

 [ ]
1
2

1( ) ( )(1 )(1 ) ( ) .
(1 )

P z c L z c L B z
k

η β
η

= + − − + + +
−

 (72) 

Substituting (71) into (70) and simplifying, the regulator’s problem is to minimize 

 ( )2( )
( ) ln .

( )
P z

k kG z z
G z φ

+ −
A  (73) 

This contrasts with the planner’s problem, which, substituting (72) into (70), simplifies to the 

following: minimize 

 ( )2( )
( ) ln 2 ( ) ln .

( )
P z

k kP z z kP z z
P z φ φ

+ − = −
A A  (74) 

The first-order condition for the regulator’s problem is 

 
2

( )2 ( ) ( ) ( ) 1 0 ,
( )

P zk P z P z G z
G z zφ

⎡ ⎤⎛ ⎞⎛ ⎞′ ′⎢ ⎥⎜ ⎟+ − − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

A  (75) 

which after some manipulation can be written as 
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( ) ( ) ( ) ( )3 2 2
2

( ) (2 )( ) ( ) ( ) ( ) .
1 2(1 )

c L Bc L B z G z z G z P z
η η βηη β

η φ η
⎡ ⎤ + − −⎛ ⎞+ + ⎡ ⎤− = −⎢ ⎥⎜ ⎟ ⎣ ⎦− −⎝ ⎠⎣ ⎦

A  (76) 

Squaring both sides of (76) to eliminate radicals, a solution to the regulator’s problem requires 

finding the roots of a fifth degree polynomial, a problem for which there is no general analytical 

solution. Hence this problem is analyzed numerically. 

 

3. Analysis of the regulator’s problem when the regulator only sets data length d 

A regulator who can only determine data length sets d to minimize pC  subject to the 

clubs’ first-order condition in s, which in symmetric equilibrium is given by (21). Using (21) and 

imposing symmetry, we can eliminate s and simplify the regulator’s problem to the following: 

choose d to minimize 

 ln constant terms>p
c LC kd d

dφ
+

= − + + <
A , (77) 

which has solution c pd d= . 

Evaluating (21) at pd d=  and comparing to (22), it follows that ps s<  must hold in the 

regulated equilibrium. From (21) and the fact that *pd d<  (Proposition 4) as 1η → , it follows 

that *s s> . Hence, in the regulated equilibrium, security effort s is intermediate between the 

security effort of the (unregulated) symmetric equilibrium *s  and the security effort chosen by 

the planner ps . 
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Appendix D: Extension with endogenous network size 

An alternative method for controlling data breaches is to allow for the sharing of data re-

siding in the databases of the two separate clubs (networks). In the model, sharing data across 

clubs eliminates the incentive for data breaches because any stolen identifying information du-

plicates existing information and is automatically revealed as fraudulent. Exchanging data across 

clubs can thus be beneficial even though agents in each club never interact in commerce with 

agents of the other group. 

In principle, data sharing could be implemented in a number of ways. LoPucki (2001) 

proposes the creation of a government agency that would manage a consolidated database of 

PID. Inclusion in the database would be optional. This appendix considers an alternative channel 

for data sharing, which is the voluntary preference of agents in the two groups to share data 

across groups. This is done by a slight generalization of the environment studied above. 

In this generalized environment, agents have the option of transacting through a single 

club or dual clubs (one for each group of agents). The two groups of agents may be of different 

size, i.e., let ( )A AGμ μ=  and ( )B BGμ μ= . If all legitimate agents decide to form a single club, no 

data breaches occur in equilibrium, so the club simply compiles data of length d on all its mem-

bers to maximize the average per-capita net benefit of legitimate club membership. That is, the 

single club chooses d to maximize (cf. expression (10)) 

1

(1 ) (1 )( )(1 ) (1 ) ( ) ( ) ,

s

A B
A A B B

V
r

u F F u F Fu c F K kd c L c L
d d

β μ μ

⎛ ⎞= ×⎜ ⎟
⎝ ⎠

− −⎡ ⎤− − − − − − + − +⎢ ⎥⎣ ⎦

 (78) 

where the underlines indicate average values, i.e., A A B Bu u uμ μ= +  etc. Let sd  denote the choice 

of data length that maximizes (78), and let ,A sV  ( ,B sV ) denote the steady-state value of legitimate 
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club membership for agents of group AG ( BG ) when PID of length sd  is collected. A steady-

state equilibrium with a single club exists when the following incentive constraints (analogous to 

(29), (30), and (31)) are satisfied 

1. Individual rationality, ,0 for ,i s A BV i G G≤ = ; 

2. No defection, , for ,i i s A Bc X V i G G− ≤ = ; 

3. No exclusion, , ,i i s A BV V for i G G≤ = , where iV  is the value of maintaining the club with-

out admitting new members.  

 If, as in Section 3 above, agents’ preferences are symmetric across groups, it is immedi-

ate that an equilibrium with a single club exists whenever a symmetric steady-state equilibrium 

exists. Moreover, the single-club equilibrium dominates the dual-club equilibrium. For any value 

of d chosen by the dual clubs, the single club can do better with this same data because the single 

club’s database provides a greater benefit in terms of fraud reduction (all frauds must now at-

tempt the more costly unskilled identity theft) at a lower cost (since the single club incurs no 

costs of securing data against breaches and no breach costs). 

In the absence of unanimity, however, conflicts of interest can arise as to the amount of 

data the single club should compile and retain. Sufficient heterogeneity in preferences can limit 

potential efficiency gains achievable through voluntary consolidation of data. To demonstrate 

this point, consider the following parameterization of the model. Suppose that the per-unit physi-

cal cost of compiling and storing data is negligible, so that the cost parameter k essentially re-

flects intangible costs associated with the loss of privacy. Agents in the two groups AG  and BG  

have identical preferences, except that agents in group AG  are indifferent to the privacy of their 

stored personal data ( Ak ε= , where 0ε >  is arbitrarily small), while agents in group BG  place a 
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higher value on confidentiality ( B Ak k> ). The two groups are of unequal size: group AG  has unit 

measure as before, while group BG  has measure 0Bμ μ= > . 

Suppose that agents in the two groups decide to form a single club. The optimal data 

length for the single club is given by (cf. equation (15)) 

 (1 )( )
s

uF F c Ld
k

− +
= , (79) 

and from (78), the equilibrium per-capita net benefit of club membership for an agent of group i 

is 

 ,
1 (1 )( )( )(1 ) (1 )

1i s i
k uF F c LV u c F K k

r k
β

μ

⎡ ⎤⎛ ⎞ − +⎛ ⎞= − − − − − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
, (80) 

for ,A Bi G G= . 

 Now suppose each group decides to form its own club. In this case, agents in group A are 

willing to surrender virtually limitless amounts of personal information to club AG , which effec-

tively precludes the possibility of fraudulent entry into their club. Once assembled, however, 

club AG ’s database is subject to data breaches committed by skilled frauds seeking access to 

club BG . Thus, with dual clubs, club AG  chooses Ad  arbitrarily large as 0Ak →  and chooses As  

to maximize 

 ( ),
1 ( )(1 ) (1 ) 1 ( )A d A AV u c F K s F s B
r

β μ β⎛ ⎞= − − − − − − −Φ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
A .  (81) 

Differentiating (81), for sufficiently large φ, the optimal skill threshold for club AG  is given by  

 ( )1 ln ( ) /As F Bφ μ β φ−= A , (82) 

which implies that, with dual clubs, the equilibrium net benefit of membership in club AG  is  
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 Because the PID stored in club A’s database is so extensive, club BG  cannot control its 

rate of skilled identity theft: any amount of data Bd  that club BG might require for entry can be 

stolen from club AG  with sufficient skill. Knowing this, club BG  chooses a data length Bd  that 

balances the benefits of reduced unskilled identity fraud against the costs associated with the loss 

of privacy. This data does not need to be well secured because data stolen from club BG ’s data-

base is insufficient to gain access to club AG ; that is, in the limit there are no breach costs for 

club BG . Hence, with dual clubs, club BG ’s problem reduces to choosing Bd  to maximize 

 ( ),
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1
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 . (84) 

Differentiating (84) and solving yields 

 (1 )( )
B
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Using (82) and (85), the equilibrium per-capita net benefit of membership in club BG  in the case 

of dual clubs can be expressed as 

 

*
,

1
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A
 (86) 

For this parameterization, the comparison between the single club and dual clubs is stated in the 

following: 
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Proposition 6. Suppose that groups AG  and BG  have heterogeneous preferences over the pri-

vacy of stored data ( b ak k>  arbitrarily small) and that the measure of each group is 

1 0A Bμ μ= > > . Then for φ sufficiently large and , , , 0B BK k μ >A  sufficiently small, 

a) A steady-state equilibrium exists for both the single club and dual clubs;  

b) Legitimate agents in both groups are better off under dual clubs than under the single 

club. 

 

Proof. The proof of Part (a) follows that of Proposition 1. To show Part (b), let / 0φ →A . Then, 

comparing (80) and (83), *
, ,A d A sV V>  for 0Bμ >  sufficiently small. Comparing (80) and (86), 

*
, ,B d B sV V>  under the same conditions. 

 

 Intuitively, Proposition 6 says that, given sufficient heterogeneity, agents may prefer to 

tolerate a certain amount of data theft, as occurs under dual clubs, rather than attempt to elimi-

nate the problem by forming a single club. Agents with a low value on privacy allow their club 

to compile large amounts of personal data because this deters fraud, even though this data is 

subject to breach and misuse. By contrast, agents who place a high value on privacy will tolerate 

a higher rate of identity theft, as the cost of keeping more of their PID private. Merging the two 

clubs can result in a level of personal data collection that seems excessive to the high-privacy 

group but insufficient to the low-privacy group. 

 More generally, Proposition 6 illustrates how heterogeneity can limit the efficiency gains 

from consolidation of PID. So long as this information is shared through voluntary associations 

(rather than mandatory participation in a single arrangement), disparate groups of agents in an 
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economy may prefer to sort into separate alliances with differing levels of personal privacy and 

data security. Clearly, heterogeneity can also limit efficiency gains attainable through other 

means as well. Regulatory limits on data collected, for example, might constrain groups who 

place low value on their privacy. 


