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Abstract

This paper investigates how competitive cyber-insurers affect network
security and welfare of the networked society. In our model, a user’s prob-
ability to incur damage (from being attacked) depends on both his security
and the network security, with the latter taken by individual users as given.
First, we consider cyber-insurers who cannot observe (and thus, affect) in-
dividual user security. This asymmetric information causes moral hazard.
Then, for most parameters, no equilibrium exists: the insurance market is
missing. Even if an equilibrium exists, the insurance contract covers only
a minor fraction of the damage; network security worsens relative to the
no-insurance equilibrium. Second, we consider insurers with perfect infor-
mation about their users’ security. Here, user security is perfectly enforce-
able (zero cost); each insurance contract stipulates the required user secu-
rity. The unique equilibrium contract covers the entire user damage. Still,
for most parameters, network security worsens relative to the no-insurance
equilibrium. Although cyber-insurance improves user welfare, in general,
competitive cyber-insurers fail to improve network security.

Keywords: Cyber Insurance, Interdependent Security, Asymmetric Informa-
tion, Network Externalities, Incentives for Cyber-Security, Moral Hazard
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1 Introduction
In this paper,1 we propose a model to study the effects of cyber insurance on user
security and their welfare. Our model highlights how network externalities com-
bined with information asymmetry lead to a missing market for cyber insurance.

The Internet serves as a ubiquitous communication platform for both indi-
viduals and businesses. Thus, an increasing amount of wealth is accessible on-
line, and cyber-crime is becoming one of the most lucrative criminal activities.
Cyber-crime is lucrative because network vulnerabilities are easy to exploit and
persecution of cyber-criminals is plagued by enforcement problems. First, and
importantly, criminals are relying on the anonymity of the Internet protocols to
disguise their traces. Second, global Internet connectivity makes it difficult for
law enforcement authorities to identify the origin of the attacks. Exploiting na-
tional differences in legal systems, criminals often operate safely from countries
with the weakest legislations and enforcement. Third, criminals quickly adapt
their attack strategies as new defenses are developed; thus, cyber-crime evolves to
minimize the chance of persecution. Altogether, this situation results in formation
of highly professional, mafia-style cyber-crime establishments, which are rapidly
expanding, see [2].

Technology-based defense and enforcement solutions are available, but there
is a consensus among security researchers [2] that the existing security problems
cannot be solved by technological means alone. We concur that these security
problems primarily result from misaligned incentives of the networked parties
with respect to their security. Existing research [4, 7, 16, 19, 18] indicates that risk
management in general and cyber-insurance in particular are potentially valuable
tools for security management. Still, at present, risk management capabilities are
virtually nonexistent in the network [2].

We model the effects of informational asymmetries in the presence of net-
work externalities, and study their consequences for network security incentives.
We believe that these features of the environment induce socially suboptimal net-
work security, and complicate the management of security risks. We build on the
seminal ideas of Akerlof[1], Rothschild and Stiglitz [17] and others,2 which we
combine with the ideas of interdependent security originated by Heal-Kunreuther

1This work was funded in part by the National Science Foundation under grant NSF-0433702.
Any opinions, findings, conclusions, and recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the funding source.

2See [20] for the literature review.
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[14], Gordon-Loeb [8] and Hausken [11].3

In our model, all users are identical, meaning that their wealth is identical and
they suffer identical damage if successfully attacked. In our model, the user’s
probability of being attacked depends on both the user security level and the net-
work security level, which individual users take as given. Thus, we have an exter-
nality. Indeed, due to this externality, individually optimal user security level is
lower than the socially optimal one.

Our setting emphasizes that interdependent security is a focal feature, which
shapes the incentives for Internet security. Although security interdependence
is present in other contexts (such as terrorist attacks [15]), network security is
especially prone to these effects because everyone is interlinked.

First, we investigate the effects of information asymmetry in the presence of
network effects. Though our model allows to study both moral hazard (when in-
surers are not aware of user security levels) and adverse selection (when insurers
cannot distinguish different user types), in this paper, we address only moral haz-
ard. We demonstrate that for a wide range of parameters, insurance market fails
to exist, i.e., we observe a missing market.

Next, we assume no information asymmetry between the insurers and the in-
sured (users). We demonstrate that user utility is higher with insurance, but the
network security level is not necessarily higher. On reverse, in many cases net-
work security worsens with insurers. Indeed, insurers only manage risks, but they
do not necessarily reduce them.

Our homogeneity assumption is simplistic, and does not hold in the actual
Internet. But, adding user and insurer heterogeneity to our setting only adds more
informational asymmetries. Then, the lemon problem becomes likely, which itself
could cause missing markets [1]. Thus, with heterogeneity, one expects adverse
selection problems, which would also contribute to missing markets.

We make two main contributions to the literature. First, we observe that even
with no heterogeneity (of users and insurers), information asymmetries compli-
cate the formation of viable cyber-insurance markets. Second, we demonstrate
that even in the absence of informational asymmetries, competitive cyber-insurers
fail to improve network security. The significant implication is that in the exist-
ing network environment, cyber-insurance markets cannot serve as a catalyst for
improvement of network security.

The paper is organized as follows. In Section 2, we propose a base model,
derive its Nash equilibrium, and compare it with socially optimal allocation. In

3See also [7, 9, 21, 5, 10, 3, 6, 13, 12]. This list is by no means exhaustive.
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Section 3, we add competitive insurers to our base model, analyze the equilibrium
with insurers. We consider two cases: when individual security levels are non-
contractible and when insurers include the requirement about individual security
level into the contract. In Section 4, we summarize our findings and conclude.
The technical details are relegated to Appendix.

2 Model
In this section, we present our base model, which highlights the interdependence
of user and network security. We consider a network populated by identical users.
Each user i has two choice variables: the convenience level ai > 0 of his network
activity, and his security level si ∈ [0, 1]. The convenience level ai can be, for
example, characterized by the number of applications utilized by the user, such
as emails, Web, IM, P2P, etc. If there are no security problems, the user derives
utility from his wealth and from network usage. We assume that both these com-
ponents of user utility Ui are additively separable:

Ui = K1 · f(W ) + K2 · g(ai)−K3 · ai,

where K1, K2 and K3 are positive constants, and W > 0 denotes user’s wealth.
We assume that the functions f and g are increasing and concave, reflecting that
user wealth W and convenience level ai have a positive but decreasing marginal
benefit for the user. To increase his convenience level, user incurs a linear cost
(cost of effort).

In the presence of network attacks, we assume that, if the attack on the user is
successful, the user incurs a monetary damage D ∈ (0,W ). Let pi be the proba-
bility that user i suffers such an attack. This probability depends on two factors:
the network security level s̄ ∈ [0, 1], which determines the probability of a user
being attacked, and the user security level si, which determines the probability of
success of such an attack. This justifies our expression for pi:

pi = (1− si) · (1− s̄) = vi · v̄, (1)

where for mathematical convenience, we introduce the user vulnerability level
vi = 1− si and the network vulnerability level v̄ = 1− s̄. Further, assume that s̄
is equal to the average security levels of its users:

s̄ =

∑
i=1,...N

si

N
, (2)
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and we let the number of users N be large enough so that a single user has a
negligible effect on the network security level. Thus, each user takes the network
security level as a given parameter.

We assume that user’s choice of a higher security requires a higher user cost
(in terms of effort), and this cost is proportional to the convenience level. Again,
assuming additive separability, we express the expected utility of user i in the
presence of network insecurity as:

E[Ui] = K1 {(1− pi) · f(W ) + pi · f(W −D)}+K2 ·g(ai)−K3 ·ai ·(h(si)+1),
(3)

where the security cost function, h(·) is increasing and convex (h′, h′′ > 0) with
h(0) = 0 corresponding to zero security level and h(1) = ∞, corresponding to
a hypothetical “perfectly secure” system. Thus, it becomes increasingly costly to
improve the security level at a higher level of security.

For simplicity, we let f(x) = g(x) =
√

x and h(x) = 1√
1−x

− 1 and solve the
problem for these specific functions. Then, (3) becomes:

E[Ui] = K1

{
(1− pi)

√
W + pi

√
W −D

}
+ K2

√
ai −K3ai

1√
vi

). (4)

Since we assume that the convenience level of user i’s network usage ai is not
affected even when this user is attacked, this model may be more suitable for
attacks like phishing, eavesdropping, etc. rather than for attacks like denial-of-
service.

2.1 Analysis
We start by deriving the optimal convenience level a∗i by taking the partial deriva-
tive of (4) with respect to ai:

∂E[Ui]

∂ai

= K2
1

2

1√
ai

−K3
1√
vi

,

from which a∗i is:

a∗i =
1

4

K2
2

K2
3

vi. (5)

Thus, the user’s a∗i depends only on her choice of vi, but not on network vulnera-
bility level v̄. Next, we substitute (5) in (4) to obtain:

E[Ui] =
1

4

K2
2

K3

[
√

vi − viv̄K(
√

W −
√

W −D) + K
√

W ] (6)

5



where K = 4K1K3

K2
2

. To simplify, we let 1
4

K2
2

K3
= 1, and obtain a normalized utility:

E[Ui] =
√

vi − viv̄K(
√

W −
√

W −D) + K
√

W. (7)

The constant K characterizes how users value their wealth relative to the utility
from the network.

2.1.1 Nash Equilibrium

To find the user i’s best response v∗i (v̄) to a given network vulnerability v̄, we
optimize (7) with respect to vi (subject to vi ≤ 1) and express v∗i (v̄) as

v∗i (v̄) = min

{
1

[2v̄K(
√

W −√W −D)]2
, 1

}
. (8)

From (8), v∗i (v̄) is identical for all users, from which any Nash equilibrium is
symmetric, and let v∗i (v̄) = v∗j (v̄) = v∗ for any users i and j. Then, from (2), we
have v̄ = v∗ and hence,

v∗ = min

{
1

[2v∗K(
√

W −√W −D)]2
, 1

}
,

from which we obtain Nash equilibrium vulnerability v∗:

v∗ = 1− s∗ = min

{
1

[2K(
√

W −√W −D)]2/3
, 1

}
. (9)

From (9), v∗ < 1 only if
√

W − √W −D > 1
2K

and thus, all else equal, users
invest in security only when their damage D or K become sufficiently high, or
when user wealth W is low.

2.1.2 Social Optimum

We assume that a social planner unilaterally dictates user vulnerability, vi = v,
and maximizes cumulative utility of the users. Since users are identical, this max-
imization is identical to a representative user utility maximization with v̄ = v.
From (7), the representative user utility is:

E[U ] =
√

v − v2K(
√

W −
√

W −D) + K
√

W. (10)
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Maximizing (10), subject to v ≤ 1, we obtain the socially optimal vulnerability
vsoc as:

vsoc = 1− ssoc = min

{
1

[4K(
√

W −√W −D)]2/3
, 1

}
. (11)

Thus, vsoc < 1 only if (
√

W −√W −D) > 1
4K

. As expected, vsoc ≤ v∗, which
allows us to formulate the following proposition:

Proposition 1 When the socially optimal security level is strictly positive, it is
strictly higher than the individually optimal one: ssoc > s∗. Users are strictly
better off in the social optimum than in the Nash equilibrium.

In the next section, we extend this model to the presence of competitive insur-
ers. We will investigate how insurer information about user security level (or lack
of such information) impacts network security.

3 Insurance Model
We define market equilibrium similar to the model of Rothschild and Stiglitz [17],
who pioneered examination of equilibria in insurance markets with information
asymmetries. We assume that each insurer offers a single insurance contract in a
class of admissible contracts, or does nothing. A Nash equilibrium is defined as a
set of admissible contracts such that: i) all contracts result in a non-negative util-
ity for the insurers, ii) taking as given the contracts offered by incumbent insurers
(those offering contracts), there is no additional contract which an entrant-insurer
(one not offering a contract) can offer and make a strictly positive profit and iii)
taking as given the set of contracts offered by other incumbent insurers, no incum-
bent can increase its profits by altering his offered contract. The literature referred
to such contracts as “competitive”, because entry and exit are free, and because
no barrier to entry or scale economies are present.

We consider risk neutral insurers who compete with each other. Let ρ be the
premium charged to a user and L > 0 be his loss covered by the insurer. We do
not consider L < 0 because it is unrealistic to expect a fine when a user suffers a
damage. Let v and v̄ be the user and network vulnerability. Then, we denote the
respective user utility by U(v, v̄, ρ, L), and from (7) and (1), we have:

U(v, v̄, ρ, L) =
√

v + vv̄K
√

W −D + L− ρ + (1− vv̄)K
√

W − ρ. (12)
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If v, ρ, L are identical for all users, then v = v̄, and we obtain

U(v, v, ρ, L) =
√

v + v2K
√

W −D + L− ρ + (1− v2)K
√

W − ρ. (13)

Additionally, we will assume that insurers take network security v̄ as given. This
assumption reflects that individual insurers cannot affect v̄ on their own.

3.1 Insurance with Non-Contractible Security
In this section, we assume that it is impossible (or too costly) for the insurers to
monitor the users’ security level. Indeed, even if v is included in the contract and
user compliance is observable by the insurer, but unverifiable in court (due to the
prohibitively high costs), the insurer would effectively operate as if no require-
ment on v is imposed. Thus, we consider the contracts of the form (ρ, L) only.
In addition, we will assume that contracts stipulate that purchase of extra cover-
age from outside parties is prohibited. Further, since the users are homogeneous,
we will restrict our attention to a symmetric equilibrium, i.e., the equilibria with
identical user actions. Henceforth, we will use the superscript ‡ to distinguish the
values in such an equilibrium.

Let user i purchase a contract (ρ, L). Then, he will choose his vulnerability vi

to maximize his utility (taking v̄ as given):

E [Ui] =
√

vi − viv̄K(
√

W − ρ−
√

W −D + L− ρ) + K
√

W − ρ. (14)

Any contract which improves user utility U(v, v̄, ρ, L) is preferred by users to
any other contract. Hence, in equilibrium, there should exist no such deviating
contract that makes non-negative profits for an insurer. Further, the equilibrium
contract is constrained by user participation - a user must prefer to buy insurance,
assuming that others already did so, to staying without insurance. In Appendix,
we show that this participation constraint never binds, and, in equilibrium, due
to competition, insurers’ profits are zero: ρ‡ =

(
v‡

)2
L‡; further, we demonstrate

that, in any equilibrium:
L‡ < D,

and from user optimization, we have:

v‡ =
1[

2K(
√

W − ρ‡ −
√

W −D + (L‡ − ρ‡)
]2/3

. (15)

8



Comparing (15) with (9), we infer that in any equilibrium:

v‡ > v∗. (16)

Although the availability of insurance may allow users to reach a higher utility,
the network security is strictly lower with insurance. In Appendix, we prove the
following proposition:

Proposition 2 If D < 8
9
W , any insurance contract with security levels unobserv-

able by the insurers strictly decreases the utility of the users. Hence, no insurance
is offered and no insurance market exists. If D > 8

9
W, there could exist an equi-

librium in which all users purchase insurance contract (ρ‡, L‡). This insurance
improves users’ utility relative to the no insurance case, but decreases their secu-
rity (i.e., v‡ > v∗ is always true).

From Proposition 2, the presence of insurers negatively affects network secu-
rity. Indeed, here, security is chosen by the users, and insured users have meager
incentives to secure themselves. This is a typical manifestation of a moral hazard.
In this case, the expected per user loss due to network insecurity increases by:

∆‡ =
[
(v‡)2 − (v∗)2

]
D.

3.2 Insurance with Contractible Security
In this section, we assume that insurers can enforce a desired security level for
the insured users at zero cost. Thus, we permit contracts (v, ρ, L) to specify a
user’s required vulnerability v. In reality, this may be achieved, for example, by
deploying tamper-proof security software that monitors and enforces user security.

3.2.1 Social Planner

Next, we derive the social planner choice of contract when security is contractible.
Let (v†, ρ†, L†)soc be the contract chosen by a social planner. The social planner
objective is to maximize the user utility, subject to the constraint of non-negative
profits:

maxρ,v,L U(v, v, ρ, L)

s.t. v2L ≤ ρ and v ≤ 1.
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In Appendix, we solve this optimization problem, and derive the following social
planner’s equilibrium:

ρ†soc = (v†soc)2L†soc,

and full coverage will be offered since users prefer it:

L†soc = D.

If the equilibrium vulnerability v†soc < 1, then it must be a solution of:

v3

W − v2D
=

1

(2KD)2
, (17)

which we have proven to be unique.

3.2.2 Competitive Insurers

Any insurance contract (v, ρ, L) that achieves a higher user utility U(v, v̄, ρ, L)
would be preferred to other contracts. In equilibrium, there should exist no con-
tract that permits non-negative insurer profits and yields a higher user utility than
the equilibrium contract does. In addition, we modify the definition of insurance
market equilibrium in Section 3 and assume that no single insurer affects the net-
work vulnerability. This assumption is realistic since competitive insurers lack
market power. The participation constraint must hold in equilibrium, i.e., insured
users must obtain at least the same utility with insurance than by staying unin-
sured. In Appendix, we show that only a unique contract can exist in equilibrium.
Let this equilibrium contract be denoted by (v†, ρ†, L†).

In Appendix, we demonstrate that, in equilibrium, insurers make zero profits
and offer full coverage since users prefer it.

ρ† = (v†)2L†, and L† = D.

If the equilibrium vulnerability v† < 1, then it must be a solution of:

v3

W − v2D
=

1

(KD)2
, (18)

which we have proven to be unique. From (17) and (18), we conclude that the
vulnerability in the competitive insurer equilibrium is higher than that in the social
optimum: v† > v†soc. In Appendix, we also derive the condition for v† < v∗. We
find that equilibrium vulnerability only improves (relative to the Nash equilibrium
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without insurance) when D
W

is lower than some critical value. This critical value is
achieved only when v∗ is close to 1, i.e., when user security is close to zero in the
no-insurance Nash equilibrium. Thus, for a large range of parameters, v† > v∗,
i.e., the presence of insurance leads to a higher vulnerability.

This permits us to formulate the following proposition:

Proposition 3 With insurers present, and security levels contractible, in any equi-
librium, full coverage L† = D is offered. For most parameters, equilibrium net-
work security is lower than in the no-insurance equilibrium. Only when user secu-
rity is low in the no-insurance Nash equilibrium (i.e., v∗ close to 1), the presence
of insurers improves network security.

From Proposition 3, with security levels observable by the insurers, the in-
surers’ presence allows to improve user welfare, but hardly improves network
security. When v† < v∗, the insurers’ presence reduces the per user expected loss
from network insecurity by ∆†, where:

∆† =
[
(v∗)2 − (v†)2

]
D.

Else, the per user expected loss increases by

∆† =
[
(v†)2 − (v∗)2

]
D.

Figure 1(a) depicts the equilibrium security level of users (and hence the net-
work security level) as a function of the damage D while Figure 1(b) depicts the
equilibrium utility of users as a function of D. The parameter values used are
K = 1 and W = 100.

4 Conclusion
In this paper, we investigate the effects of competitive cyber-insurers on net-
work security and welfare. We highlight the impact of asymmetric information
in the presence of network externalities and address the effects of interdependent
security on the market for cyber-risks. The existing literature attributes cyber-
insurance a significant role in cyber-risk management; it especially emphasizes
positive effects of cyber-insurance market on security incentives. We find that,
on reverse, the presence of competitive cyber-insurers weakens user incentives to
improve security.

11



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

s vs D

No insurance NE
No insurance SO
Insurance − Competition
Insurance − Social planner

0 20 40 60 80 100

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11

D

U vs D

No insurance NE
No insurance SO
Insurance − Competition
Insurance − Social Planner

(a) (b)

Figure 1: (a) Security level and (b) utility of homogeneous users in equilibrium as
a function of the damage 0 < D < W . Here W = 1000 and K = 1.

First, we consider insurers who cannot observe (and thus, cannot contract)
user security; here, insurers observe the network security only. Then, the moral
hazard problem is present, i.e., with more insurance coverage, the users’ incen-
tives to invest in security become meager. In this case, for most parameters, the
insurance market collapses, i.e., no insurance is offered in equilibrium. Even if
cyber-insurance exists, it covers a minor fraction of damages only. Our findings
are in line with the existing Internet, where cyber-insurance is scantly observed.

Second, we consider insurers who observe (and thus, can contract) user secu-
rity. Here, insurers’ contracts include user security level which insurers enforce
at zero cost, and thus, no moral hazard is present. Still, in general, competitive
insurers fail to improve upon the security level of the no-insurance equilibrium.
Though insurance improves the utility for risk-averse users, it does not serve as an
incentive device for improving security practices. Indeed, insurance is a tool for
risk management and redistribution, not necessarily a tool for risk reduction.

To sum up, we argue that a combination of network effects and information
asymmetries leads to difficulties in formation of viable insurance markets for cy-
ber risks. Thus, our results dash the hopes for both, expectations of development
of cyber insurance markets under the current network environment, and for the
beliefs that such markets may serve as a catalyst for improvement of network
security.
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5 Appendix
Proof of Proposition 2

When the user vulnerability v is non-contractible, the contracts have the form
(ρ, L), and v is selfishly chosen by the users. Since our users are homogeneous,
we will restrict our attention to a symmetric equilibrium, i.e., user actions in equi-
librium are identical. Let (ρ¦, L¦) be such an equilibrium insurance contract and
v̄¦ be the resulting network vulnerability. First, we show that in any equilibrium
L¦ < D.

Assume the reverse and let (ρ¦, L¦ = D) be an equilibrium. In this case,
it is optimal for each user to choose v = 1. Hence, v̄¦ = 1 and ρ¦ = D for
non-negative insurer profits. From (13), U(1, 1, D,D) = U(1, 1, 0, 0), which
implies that the user is indifferent between buying and not buying insurance. If
the vulnerability in the no-insurance Nash equilibrium v∗ < 1, then the user’s
participation constraint does not hold: U(vi, 1, 0, 0) > U(1, 1, D, D) for some
vi < 1. This is a contradiction since user i is better off not purchasing such an
insurance, and therefore L¦ < D.

To determine the vulnerability that the insured user chooses selfishly, we dif-
ferentiate his utility with respect to v, keeping v̄ fixed:

∂U(v, v̄¦, ρ¦, L¦)
∂v

= 0,

and we have
v =

1

(2v̄¦K(
√

W − ρ−
√

WD + L− ρ))2
. (19)

where WD = W −D. In equilibrium, v = v̄¦ and from (19), we obtain (similar
to (9)):

v̄¦ =
1[

2K(
√

W − ρ¦ −
√

WD + (L¦ − ρ¦)
]2/3

, (20)

Comparing (20) with (9), we infer that:

v∗ < v̄¦, (21)

because √
W − ρ¦ <

√
W and

√
WD + (L¦ − ρ¦) ≥

√
WD.
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Next, let us make sure that no user deviates and stays without insurance, that is
the participation constraint holds. For the uninsured user i, utility is maximized at

vi =
1

(v̄¦)2
[
2K(

√
W −

√
WD)

]2 . (22)

Comparing this with (9), we have

vi (v̄
¦)2 = (v∗)3 ,

and from (21),

vi =

(
v∗

v̄¦

)2

v∗ < v∗,

and his maximum attainable utility is

Ui =
√

vi + viv̄
¦
[
2K(

√
W −

√
WD)

]
+ K

√
W

=

(
v∗

v̄¦

)√
v∗ +

(
v∗

v̄¦

)
(v∗)2

[
2K(

√
W −

√
WD)

]
+ K

√
W < U∗.(23)

Note that U∗ = U(v∗, v∗, 0, 0). Hence, for (ρ¦, L¦) to be an equilibrium contract,
U(v¦, v̄¦, ρ¦, L¦) > U(v∗, v∗, 0, 0) = U∗. Then, from (23),

Ui < U∗ < U(v¦, v̄¦, ρ¦, L¦),

and we infer that the participation constraint does not bind.
Next, we show that, if D < 8

9
W , the only equilibrium contract is (0, 0). Con-

sider a contract (ρ, L) and let ṽ be the vulnerability obtained from (20). Due to
insurer competition, in any equilibrium

ρ = ṽ2L. (24)

If not, an entrant insurer could design another contract that yields lower profits,
which users prefer since it maximizes their utility. The user utility is obtained by
substituting (20) in (12). Then, we have

U = K
√

W − ρ +
1

(16K(
√

W − ρ−
√

WD + L− ρ))1/3
. (25)

Using (24), we rewrite (25) as K
√

W − ṽ2L + 1
(16K(

√
W−ṽ2L−√W−D+L−ṽ2L))1/3 .
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Let ˙̃v denote ∂ṽ
∂L

, and let W̃D = WD + (L − ρ) and W̃ = W − ρ. Next, we
demonstrate that ˙̃v > 0. From (20),

∂ṽ3

∂L
=

∂

∂L

1

(2K(
√

W̃ −
√

W̃D))2

3ṽ2 ˙̃v =
−2

(2K(
√

W̃ −
√

W̃D))3

(
1

2
√

W̃

∂W̃

∂L
− 1

2
√

W̃D

∂W̃D

∂L

)

=
−2

(2K(
√

W̃ −
√

W̃D))3

(
(−ṽ2 − 2ṽ ˙̃vL)

2
√

W̃
− (1− ṽ2 − 2ṽ ˙̃vL)

2
√

W̃D

)

=
1

(2K(
√

W̃ −
√

W̃D))3

(
(ṽ2 + 2ṽ ˙̃vL)√

W̃
+

(1− ṽ2 − 2ṽ ˙̃vL)√
W̃D

)

∴ ˙̃v

(
3ṽ2 +

2ṽL

(2K(
√

W̃ −
√

W̃D))3

[
1√
W̃D

− 1√
W̃

])

=
1

(2K(
√

W̃ −
√

W̃D))3

(
ṽ2

√
W̃

+
(1− ṽ2)√

W̃D

)
,

where the last step is obtained by moving all the terms involving ˙̃v to the LHS. The
RHS is obviously positive while the coefficient of ˙̃v on the LHS is also positive
(since W̃ > W̃D) and ˙̃v > 0 is proven.

Next, we differentiate the utility w.r.t. L,

∂U

∂L
=

K

2
√

W − ṽ2L
(−ṽ2 − 2ṽ ˙̃vL) +

−1
3

(16K)1/3(
√

W − ṽ2L−√W −D + L− ṽ2L)4/3
× . . .

. . .

(
(−ṽ2 − 2ṽ ˙̃vL)

2
√

W − ṽ2L
− ((1− ṽ2)− 2ṽ ˙̃vL)

2
√

W −D + L− ṽ2L

)

=
K(−ṽ2 − 2ṽ ˙̃vL)

2
√

W − ṽ2L
− Kṽ2

3

(
(−ṽ2 − 2ṽ ˙̃vL)

2
√

W − ṽ2L
− ((1− ṽ2)− 2ṽ ˙̃vL)

2
√

W −D + L− ṽ2L

)

Collecting the terms and simplifying we obtain:

2

K

∂U

∂L
= −ṽ2√

W̃
− 2ṽ ˙̃vL√

W̃
+ ṽ2

3
√

W̃ D
− ṽ2

3

(
(−ṽ2−2ṽ ˙̃vL)√

W̃
− (−ṽ2−2ṽ ˙̃vL)√

W̃ D

)

= −ṽ2

(
1√
W̃
− 1

3
√

W̃ D

)
− 2ṽ ˙̃vL√

W̃
+ ṽ2(ṽ2+2ṽ ˙̃vL)

3

(
1√
W̃
− 1√

W̃ D

)

= −ṽ2

(
3
√

W̃ D−
√

W̃

3
√

W̃
√

W̃ D

)
− 2ṽ ˙̃vL√

W̃
+ ṽ2(ṽ2+2ṽ ˙̃vL)

3

(√
W̃ D−

√
W̃√

W̃
√

W̃ D

)
(26)
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Since 2ṽ ˙̃vL > 0 and
√

W̃D <
√

W̃ , the last two terms of (26) are strictly
negative for any L ≥ 0.

Let D < 8
9
W . Then, W < 9(W −D), and taking the square root we obtain:

3
√

WD −
√

W > 0, (27)

and since W̃D = WD + (L‡ − ρ‡) > WD and W̃ = W − ρ < W from (27) we
have:

3
√

W̃D −
√

W̃ > 3
√

WD −
√

W > 0.

Hence, we have proven that if D < 8
9
W , 3

√
W̃D −

√
W̃ > 0. In this case, the

first term of (26) is negative as well, which leads to:

2

K

∂U

∂L
< 0.

Thus, we have proven that if D < 8
9
W , utility is maximized at L = 0. Thus, the

only equilibrium insurance contract is (0, 0).
If D > 8

9
W , there could exist an insurance contract, which improves user

utility relative to U∗. See Fig. 2(a) for an example which shows how U(ρ, L) is
maximized at L > 0, and users may reach a higher utility with insurance.

2 4 6 8 10 12 14 16 18
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δ1

(a) (b)

Figure 2: (a) Unobservable case: U vs L (L ∈ [0, 20], K = 1, W = 100, D = 99)
and (b) Observable case: δ† and δ1 vs W .
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Proof of Proposition 3

First, we notice that in any equilibrium, L† = D and insurer profit is zero due to
competition, as in Proposition 2. Hence, we restrict our analysis to full coverage
only.

Second, in any equilibrium, user utility from deviation to no-insurance gives
user a strictly lower utility. Indeed, assume the reverse. Suppose a user can deviate
to vi with no insurance and his utility without insurance is equal to his utility with
insurance, i.e., U(vi, v

†, 0, 0) ≥ U(v†, v†, v†2D, D). Consider an entrant insurer
who offers him a contract (vi, viv

†D, D) that offers non-zero coverage at actu-
arially fair price. By adopting this contract, the user improves his utility, which
conflicts our assumption about the equilibrium. Therefore, the utility from devia-
tion must be strictly lower and all users strictly prefer to buy insurance.

Lastly, we prove that in any equilibrium, all user contracts are identical. As-
sume the reverse, and let (v1, v1v̄D, D) and (v2, v2v̄D, D) be two contracts in
equilibrium, with non-zero fraction of users buying each contract. Without loss
of generality, we let v1 < v2, and thus v1 < v̄ < v2. From Section 3.2.2, we
assume that insurers take v̄ as given. Consider the contract (ṽ, ṽv̄D, D) offered
by an entrant insurer. Suppose this contract maximizes U(ṽ, ṽv̄D,D):

∂

∂ṽ

(√
ṽ + K

√
W − ṽv̄D

)
= 0.

∂

∂ṽ

(√
ṽ + K

√
W − ṽv̄D

)
= 0

1

2
√

ṽ
− Kv̄D

2
√

W − ṽv̄D
= 0

√
W − ṽv̄D√

ṽ
= Kv̄D (28)

From (28), there is a unique solution for ṽ since the LHS is monotone decreas-
ing. Hence, ṽ 6= v1 and ṽ 6= v2 since if either were true, then U(v1, v1v̄D,D) 6=
U(v2, v2v̄D,D), which is a contradiction. Thus, U(ṽ, ṽv̄D,D) > U(v1, v1v̄D, D) =
U(v2, v2v̄D,D) and insured users will be willing to deviate to this new contract.
Thus, we have shown that two different contracts cannot be present in equilibrium,
and we have proven that in any equilibrium, all users buy an identical contract.

Next, we prove that the equilibrium is unique. From (28), in any equilibrium,
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ṽ = v̄ = v†, and we have
√

W − v†2D√
v†

= Kv†D
√

W − v†2D = Kv†
√

v†D
v†3

W − v†2D
=

1

(KD)2
. (29)

From (29), there is a unique solution for the equilibrium v†, since the LHS is
monotone decreasing. Thus, the equilibrium is unique.

Next, we determine how this unique v† compares to v∗. When both v† and v∗

< 1, we can equate v3 from (9) and (29) to get

1

[2K(
√

W −√W −D)]2
=

W − v2D

(KD)2

D2

[2(
√

W −√W −D)]2
= W − v2D

W

D
− D

[2(
√

W −√W −D)]2
= v2

Using (9) for v∗ < 1 and denoting D
W

by δ, we have

W

D
− D

[2(
√

W −√W −D)]2
=

1

[2K(
√

W −√W −D)]4/3

1
D
W

−
D
W

[2(1−
√

1− D
W

)]2
=

1

[2K
√

W (1−
√

1− D
W

)]4/3

1

δ
− δ

[2(1−√1− δ)]2
=

1

[2K
√

W (1−√1− δ)]4/3
.

Thus, we obtain an equation for δ:

(1−
√

1− δ)1/3

(
(1−√1− δ)

δ
− δ

4(1−√1− δ)

)
=

1

[2K
√

W ]4/3

(1−
√

1− δ)1/3

(
1

(1 +
√

1− δ)
− (1 +

√
1− δ)

4

)
=

1

[2K
√

W ]4/3
(30)

We observe that the LHS is an increasing function of δ, which gives us a unique
solution δ∗ of (30). For δ ≤ δ∗, we have v† ≤ v∗, i.e., insurance improves the
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security level in the no-insurance Nash equilibrium. From (9), we know that when
δ is low, v∗ is high. This implies that insurance improves upon the no-insurance
security level only when v∗ is high. Let δ1 denote the δ at which v∗ = 1. Fig. 2
(b) depicts δ1 and δ∗ as a function of the wealth W (K = 1).

Social Planner

The contract offered by a social planner must be a solution to the following opti-
mization problem:

maxv,ρ,L U(v, v, ρ, L)

s.t. v2L ≤ ρ and v ≤ 1.

Next, we write the Lagrangian:

LAN = U(v, v, ρ, L)− λ1(v
2L− ρ)− λ2(v − 1)

Taking the derivatives of LAN w.r.t. v, L and ρ and equating to 0 gives us the
following equations.

∂LAN

∂v
=

∂U(v, v, ρ, L)

∂v
− 2λ1vL− λ2 = 0

(
1

2
√

v
− 2vK(

√
W − ρ−

√
W −D + L− ρ))− 2λ1vL− λ2 = 0 (31)

∂LAN

∂L
=

∂U(v, v, ρ, L)

∂L
− λ1v

2 = 0

Kv2

2
√

W −D + L− ρ
− λ1v

2 = 0 (32)

∂LAN

∂ρ
=

∂U(v, v, ρ, L)

∂ρ
+ λ1 = 0

− Kv2

2
√

W −D + L− ρ
− K(1− v2)

2
√

W − ρ
+ λ1 = 0 (33)

Further, from complementary slackness, we have

λ1(v
2L− ρ) = 0, (34)

and λ2(v − 1) = 0 (35)
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Note that v 6= 0, since that would require infinite security costs for the users. From
(32), we conclude that λ1 > 0 and thus the constraint (34) binds:

v2L = ρ (36)

Equating λ1 from (32) and (33), we obtain:

K

2
√

W −D + L− ρ
=

Kv2

2
√

W −D + L− ρ
+

K(1− v2)

2
√

W − ρ

Canceling out K/2 > 0, we obtain:

1√
W −D + L− ρ

=
v2

√
W −D + L− ρ

+
(1− v2)√

W − ρ
,

or
(1− v2)√

W −D + L− ρ
=

(1− v2)√
W − ρ

,

which leads to:
L = D if v < 1. (37)

Now, if v < 1, we can substitute (36) and (37) into (32) to get λ1 = K
2
√

W−v2D
.

Substituting this value of λ1, λ2 = 0 (since v < 1) and (37) into (31), we get

1

2
√

v
=

K√
W − v2D

vD

v3

W − v2D
=

1

(2KD)2
(38)

Thus, if v < 1, it is the unique solution to (38) (since the LHS is monotone
increasing).
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