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Abstract One of the key challenges of the information society is respons-
ible handling of personal data. An often-cited reason why people fail to
make rational decisions regarding their own informational privacy is the
high uncertainty about future consequences of information disclosures
today. This paper builds an analogy to financial options and draws on
principles of option pricing to account for this uncertainty in the valuation
of privacy. For this purpose, the development of a data subject’s personal
attributes over time and the development of the attribute distribution in
the population are modelled as two stochastic processes, which fit into the
Binomial Option Pricing Model (BOPM). Possible applications of such
valuation methods to guide decision support in future privacy-enhancing
technologies (PET) are sketched.

1 Introduction

In certain jurisdictions, the right of informational self-determination implies
active control of one’s personal data. To exercise such control, it is crucial
for people to understand the implications of data disclosure. While visions for
privacy-enhanced identity management [1] seek to provide technical means for
securing the disclosure of personal data under different threat models, it is still a
challenging question how individuals can be supported in assessing the value of
their personal data. However, the latter is a prerequisite for the former: making
informed disclosure decisions depends on the ability to compare between the
alternatives in the first place. Irrespective of the concrete supporting technology, a
major obstacle that prevents people from making rational decision regarding their
privacy is the uncertainty about possible future consequences of data disclosure
at present [2]. Similarly, known information-theoretic privacy metrics at best
reflect the present value of personal data. These metrics ignore that the value of
personal data, for instance for re-identification, may change over time. However,
the time between disclosure and exploitation of personal data is very relevant
for the inter-temporal value of personal data: the more time passes between
both events, the more uncertainty arises about the value. This is so because
attribute values which apply to a data subject at the time of disclosure may not
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be applicable to the same data subject anymore when the data is exploited. Also
the distribution of attribute values in the entire population changes over time.
Attribute values which uniquely describe a single data subject at present may
become common in the population in the future. Accordingly, their value for the
purpose of re-identification would shrink over time.

In this paper, we present a framework to model this kind of uncertainty and
account it in measures of the future value of attributes that are to be disclosed
at present. Although novel to the field of privacy research, modelling uncertainty
about future states has a long tradition in other disciplines, such as finance and
business administration. So we will draw on concepts from option pricing theory
and show how this theory translates to the problem of personal data disclosure.
The core idea is to interpret data disclosure as writing a call option that allows
the counterpart to use the data for identification later on.

To start with a simple case and focus on the core idea, we confine ourselves in
this paper to binomial stochastic processes, similar to the Binomial Option Pricing
Model (BOPM) [3]. In principle, the theory generalises so that any stochastic
process with better fit to reality can be plugged into our framework. The choice
of the most appropriate process for specific attributes in a certain context is an
empirical question. It thus falls beyond the scope of this working paper. Again
for the sake of simplicity, we limit our view to a single attribute with finite
and discrete attribute values. Extensions to multiple attributes are possible, but
increase the dimensionality of the problem substantially. We further rule out
any ambiguity or measurement error and assume that each data subject in the
population can be assigned exactly one attribute value.

Under the above-stated assumptions, the value of an attribute to re-identify
a data subject after some time is determined by a combination of two factors:

1. by the chance that the attribute value still applies to the particular data
subject. This factor is governed by the individual behaviour of the data
subject. So we will refer to it as the micro level.
And, if this condition holds,

2. by the uniqueness of the attribute value, i. e., how many other data subjects
in the population do meanwhile share the same attribute value and thus form
an equivalence class? This factor is driven by the aggregate behaviour of all,
possibly heterogeneous, data subjects in the population. So we will refer to it
as the macro level.

In our framework, each factor is a source of uncertainty and can be modelled by
a stochastic process from the point of view of a transaction counterpart, who

1. learns the attribute value of a data subject at the time of disclosure, and
2. can observe the distribution of attribute values in the population at any time

(e. g., through representative anonymous surveys or observation).

Hence, changes of individual attributes remain private information of each data
subject. We deem this a reasonable and practical abstraction.
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The remainder of this working paper is organised as follows. Section 2 re-
calls existing approaches to quantify anonymity and privacy in databases and
communication systems as well as generalisations. Since none of these metrics is
designed to consider value over time, inspiration is sought from financial mathem-
atics. We briefly review existing adaptations of quantitative financial methods to
information security before we present our notion of privacy options in Section 3,
the ‘heart’ of this working paper. Section 4 implements the ideas in a concrete
proposal to model the two relevant quantities as independent stochastic pro-
cesses: a state-space model is suggested for individual attribute value transitions
(Sect. 4.1), and a binomial random walk serves as proxy for the distribution of
attribute values in the population (Sect. 4.2). We combine both components
to a valuation method in Section 5 and interpret the results in Section 6. The
concluding Section 7 sketches future directions.

2 Related Work

We have identified two areas of relevant prior art. First, measurement of privacy
with information theory and probability calculus has some tradition as a sub-field
of computer science [4]. Sect. 2.1 briefly reviews this string of research. Second,
another set of relevant publications are prior attempts to adopt quantitative
methods from finance to information security and privacy. These are summarised
in Sect. 2.2.

2.1 Measurement of Anonymity and Unlinkability

Measuring anonymity with information theory was—to the best of our know-
ledge—first motivated in the 1980s after a public debate about the census in
Germany.1 Fischer-Hübner [7, 8] uses the entropy of attributes (columns) in a
database, for instance demographic data in a census survey, to measure their
average information. This way, it is possible to compute the average number of
records in the database that would match a given set of attributes. The degree of
anonymity (or the “risk of re-identification” in [8]) is the reciprocal of this number
of records. Attempts to measure anonymity in statistical databases [9] have led
to a number of combinatorial metrics, most prominently k-anonymity [10,11].

Aside from statistical databases, anonymity in communication systems has
been a topic of research on privacy metrics. Díaz et al. [12] as well as Serjantov
and Danezis [13] propose Shannon entropy [14] to measure the uncertainty of
an outside observer about the assignment of users to roles (sender, recipient,
uninvolved) in a communication system. Shannon entropy measures the amount
of additional information an observer would need in order to unanimously identify
the role of the user. From this metric, it is possible to calculate the average size
of the anonymity set [15] an anonymous communication system can provide.
The larger the entropy the more information is still required by the observer,
1 Confidentiality in statistical databases has a much longer research track, e. g., [5, 6].
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and hence the more anonymous the users of a system are. By contrast, Tóth
et al. [16] point out that even if the entire communication system provides a
reasonable degree of anonymity on average, the probability for a single user of
being identifiable can still be unacceptably high. Instead of Shannon entropy,
Tóth et al. define an upper bound for the probability of identification as the
“degree of anonymity,” which no user must exceed.

Another modification is to relax the strict focus on communication systems
and model unlinkability between two arbitrary items [15, 17]. This view has been
taken up for example by Clauß [18], who approximates unlinkability measures
in a model world where each data subject’s identity is defined by a set of
finite discrete attributes. Only part of their values may be known to an outside
observer. So a data disclosure decision effectively deals with the problem of
whether or not an additional attribute value (previously unknown to the observer)
should be disclosed. Our model assumptions later in Sect. 4 are compatible
with this stylised view of the world. Though not carried out in this paper, our
approach is extendable to joint unlinkability measures between more than two
items. Obviously, there exist infinitely many projections that map the resulting
probability space over the exponentially growing number of set partitions to a
scalar. Specific instances of such projections with more [19] or less [20] clear
information-theoretic interpretation have been proposed in the literature as
concrete metrics of unlinkability.

All this research has in common that the value of personal data is measured
for a single point in time.2 Such measurements do not account for its value in
possible future states. We deem this a substantial shortcoming, as it neglects the
fairly accepted principle that so-called adversaries against one’s informational
privacy will never forget any information disclosed to them (see for instance [15]).
As already outlined in the introduction, the inability of individuals to anticipate
future states in disclosure decisions is named as the main reason to explain
partly puzzling results in laboratory experiments that try to measure the value
of personal data with empirical methods [2, 22,23].

2.2 Financial Methods in Information Security

Option pricing has its roots in financial mathematics and deals with finding the
‘fair’ price for contracts that allow their holders to choose between a security and
a fixed amount of money at a future point in time. The field has grown rapidly
since the seminal work by the meanwhile Nobel laureates Black, Scholes and
Merton [24, 25] was published in the 1970s. Financial options became a popular
tool for risk managers because they allow portfolio managers to ‘hedge’ market
risk, that is to shape the distribution of possible outcomes in very sophisticated
ways and thereby adjust it to the investor’s own risk appetite. But the idea
soon spread to other domains than market-traded securities. So-called ‘real
options’ have been proposed to gauge investment decision, in particular in project
2 A single exception is a metric targeted to location-privacy [21], which accounts for
different locations over time.
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management [26]. They are tools to model project risk and opportunities with
sound financial valuation methods to compare between alternatives. Another
property of real options in project management is the possibility to anticipate
midcourse strategy corrections to react to uncertain future states.

Several authors have proposed to apply real options to information security
investment [27–30] to complement other accounting metrics, such as return on
information security investment (ROSI) and annual loss expectancy (ALE) [31–
33]. Interestingly, Gordon et al. [27] use real options to criticise security over-
investment, whereas Daneva [28] makes the case for higher spending.

Other applications of financial methods on specific information security prob-
lems include Matsuura’s [34] option pricing approach to model the value of what
he calls “digital security token.” These tokens can be thought of as media objects
with attached protection, as suggested in the context of digital rights manage-
ment (DRM). In [35], we have adapted the idea of prediction markets [36] to fix
incentives in software vulnerability disclosure with so-called “exploit derivatives.”
Ozment [37] has tackled vulnerability disclosure with auction theory.

To the best of our knowledge, this paper is the first to apply option pricing
theory to informational privacy. Neither are we aware of any work in other
domains that suggests financial derivatives written on information measures (in
Shannon’s sense [14]) as underlying.3

3 From Financial to Privacy Options

The key idea of this paper is that disclosing a single attribute value can be
interpreted as writing an option for exploiting the attribute in future. Here,
‘to exploit’ refers to the act of using the attribute to draw inference on the
data subject’s identity or preference, and to base decisions on this information
that may affect the data subject. One prominent example brought forward by
Odlyzko [38] and Acquisti and Varian [39] is price discrimination in buyer-seller
relationships. Thus, the data subject who discloses an attribute value thereby
writes an option, whereas the transaction counterpart buys an option to use the
information for decision-making. We follow the convention in the information
security literature and further refer to the transaction counterpart as ‘adversary’.4

Most elements of financial option pricing theory have direct correspondences
in our notion of privacy options.

The currency in which privacy options are denominated is information in
Shannon’s [14] sense. Knowing an attribute value (i. e., holding the option), if
valid, helps to reduce the uncertainty of the adversary about the identity of the
data subject. The means to express uncertainty in information theory is entropy
and the contribution of the attribute value has information value. The unit of
information is bits.
3 We appreciate hints from the workshop participants to relevant work in this respect.
4 This is just a convenient convention and should not be interpreted as an adoption of
the normative view that collecting personal data is necessarily hostile or evil.
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The underlying asset of privacy options is the disclosed attribute value and
the stock price corresponds to the information (in Shannon’s sense) which the
adversary gains from the attribute value by exploiting it.

The privacy option is a kind of call option. In contrast to financial call
options, the asset, that is the attribute value, is handed over to the adversary
(long position) at the time of the option purchase. The action that may be
performed by the adversary is exploiting the underlying attribute value rather
than buying the underlying stock.

The correspondence to the premium is the compensation the adversary has to
pay in return for the attribute value. However, this compensation is not necessarily
denominated in the currency ‘information’. For example, a merchant could offer
a small rebate to the sales price to incentivise the use of loyalty cards from
which personal data can be collected. This way, empirical measurements of this
monetary premium, such as in [22,40], could be linked to information-theoretic
quantities by calibrating information-utility functions.

The increasing uncertainty about the linkability of the attribute value to the
data subject can be interpreted as interest rate of an alternative investment: the
probability of a valid link between the disclosed attribute value and the data
subject decreases with the time elapsed since the disclosure of an attribute value.
The value of the option decreases proportionately to the probability of a valid
link because this linkability determines whether the adversary can benefit from
the option at all.

Analogies also exists for the distinction of the two vanilla option styles, i. e.,
the American option and the European option. The difference between both
styles is the time period in which the option may be exercised. An American
option may be exercised at any time starting from the purchase of the option
until it expires. This applies to the situation where a service provider does not
depend on the assistance of the data subject for exploiting the data after the
data subject has once disclosed its attribute value. An European option may only
be exercised at the date of expiry. This applies to situations where the benefit
for the adversary depends on some action of the data subject. For example, a
merchant’s information advantage of a purchase history is only valuable if (and
when) the data subject decides to revisit the store [39,41].

Other elements of financial options do not have direct correspondences in our
notion of privacy options developed in this paper. Put options are impractical
since ‘negative information’ does not exist. They could, however, make sense in
special cases where deletion of already disclosed personal data can be enforced [42].
Due to the non-rivalrous nature of information goods, we were also unable to
conceive a correspondence to dividends of the attributes underlying our privacy
options. Finally, the strike price (or exercise price) is the amount of money to
be paid when the option is actually exercised. If exploiting the attribute value
does not depend on other attributes, then there is no way to enforce a transfer
of money or information, hence the strike price is always zero. One can conceive
to change this by introducing a trusted third party who acts as an information
broker, or by allowing for partial disclosure of multiple dependent attributes.
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Another interpretation for the strike price is the effort of the adversary to retrieve
the personal data at the time of exploitation. It may vary with organisational
and technical factors, but it is largely determined by the adversary and not—like
for financial options—by the contract itself. All this highlights that there is room
for further extension of the analogy, though they are clearly beyond the scope of
this initial working paper.

4 Sources of Uncertainty

In this section, we specify models for each source of uncertainty. In order to keep
the calculations tractable, we model the two sources of uncertainty as independent
stochastic processes; more precisely, the timed linkability process for attribute
value changes of a single data subject (microscopic view, Sect. 4.1), and another
stochastic process that drives the distribution of attribute values in the population
(macroscopic view, Sect. 4.2). The latter model has many similarities with simple
models of asset value fluctuations in financial option pricing.

4.1 Micro Model: Timed Linkability Process

Attribute values that have just been disclosed by a data subject are linkable
to the data subject by the adversary. Here, we do not consider misinformation
and thus assume links to be valid as long as the data subject does not change—
intentionally or unintentionally—to another attribute value. We further assume
that it is generally possible to change attribute values, however, the actual change,
particularly its time and the new value, is not observable by the adversary.

This suggests modelling the attribute values over time as a stochastic process.
The process can be expressed in a (discrete time-invariant) state-space model
without inputs or outputs. The state vector x(t) contains the probability of a
valid link in the first element and the probability of an invalid link in the second
element. The next state x(t+1) of this state-space model is defined in a recursive
manner depending on the current state x(t) and a state transition matrix A,

x(t+ 1) = Ax(t) . (1)

Elements ai,j of A hold the probability of a state change from state j to state i.
The absence of inputs allows us to simplify the model and use matrix multiplica-
tion instead of recursion to calculate a particular x(t+ 1),

x(t+ 1) = At+1x(0) . (2)

In the simplest case, the state matrix A has dimension 2× 2 and is defined by
only two probabilities, p and p̄. Let p be the probability that the data subject
keeps its linkable attribute value and p̄ be the probability that a data subject,
who once changed the attribute value to something unlinkable, does not revert
to the linkable attribute value. The state vector x(0) at the time of disclosure is

x(0) =
(

1
0

)
. (3)
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The first element of vector x(0) holds the initial probability of linkability, which
equals 1 by definition: the attribute value is definitely linkable when it has just
been disclosed. Accordingly, we define the state matrix A as

A =
(
p 1− p̄

1− p p̄

)
. (4)

This allows us to model time aspects of attribute value changes. If, for instance,
the attribute describes the attribute haircut and its value is ponytail , then the
attribute might change instantly to any other value that describes a shorter
haircut, but, naturally, hair cannot grow as fast as it can be cut off. And thus
the probability of reverting back to ponytail is limited by a natural upper bound.
Assume that the probability of keeping that haircut would be fairly high. Fig. 1
illustrates a hypothetical development of the probability of linkability over time.
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Figure 1. Development of the probability of linkability, if the probability p of keeping
the disclosed attribute value is high and the probability p̄ of staying with another
attribute value is high as well. The diagram shows 60 time steps with p = 0.9 and
p̄ = 0.97.

Other attributes might follow different processes, say, two attribute values and
whenever the attribute has taken one value, the data subject tends to choose the
other one with high probability. One can think of this as a model of fashions that
alternate every couple of years. Thus, after the disclosure of the attribute value,
it is possible to predict the values in the future, but with decreasing certainty.
Fig. 2 shows such a setting.

Yet another situation emerges for attributes such as passport numbers: there
is a vast number of different attribute values. The probability of requesting a new
passport and therefore changing the attribute value might be small, depending
on the travel habits of the data subject and on constraints imposed by the issuing
country. But the probability of reverting back to exactly the same passport
number is negligibly small. If we assume that this probability is in fact zero,
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Figure 2. Development of the probability of linkability, if the probability p of keeping
the disclosed attribute value is small as well as the probability p̄ of staying with another
attribute value. The diagram shows 10 time steps with p = 0.2 and p̄ = 0.2.

then is it easy to see that the probability of linkability in the state-space model
reduces to an exponential function of p, since for p̄ = 1, it holds that (after t
time steps)

x(t) = Atx(0) =
(
p 0

1− p 1

)t(1
0

)
=
(
pt 0

1− pt 1

)(
1
0

)
=
(
pt

1− pt
)

. (5)

In Fig. 3, we show an example for the development of linkability, if p̄ = 1.
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Figure 3. Development of the probability of linkability, if the probability p̄ of staying
with a different attribute value after the first change is certainty. The diagram shows
240 time steps with p = 0.975 and p̄ = 1.
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Note that generalisations to higher-order state-space models are possible and
can be useful to represent other than binary attributes. We defer examples for
this case to future work.

4.2 Macro Model: Population Development

In the population, individual data subjects can be distinguished by their attribute
values. A metric for the average discernibility is the self-information of the
attribute value in the population. In terms of Shannon’s information theory, the
attribute can be understood as source of information, the attribute values as
alphabet, and the (relative) frequency of each attribute value as the probability
of the symbol. Let v be an attribute value and rv be the relative frequency of
this value in the population, then

Hv = − log2 rv (6)

is the self-information of the attribute value. It expresses the amount of inform-
ation conveyed by the attribute value to the adversary, who may exploit it to
re-identify the data subject.

The relative frequencies vary over time depending on how the individual data
subjects change their attribute values. Thus, also the self-information of each
attribute value fluctuates. The straight approach of modelling the behaviour
of all data subjects, their attribute values, and the changes over time by an
aggregation of many micro-level models would be analytically intractable and
computationally demanding. Moreover, generalising one fixed state-space model
of Sect. 4.1 to all data subjects neglects possible heterogeneity between them
and is therefore debatable with theoretical arguments. Instead, we model the
macroscopic changes of the distributions of attribute values in the population as
a separate stochastic process.

A similar approach is taken in financial option pricing, where the stock price
of the underlying asset can be modelled in a similar way [3]. Both the stock
price and the relative frequency of the attribute value can move up or down in
each single time step. This is in line with our notion that the attribute value
corresponds to the underlying asset in option pricing, and the self-information,
as a function of the relative frequency, can be understood as a price denoted
in self-information as currency. Fig. 4 shows a single time step of that process.
The uncertainty about an increase or decrease of the relative frequency rv is

rv

rv + u

rv + d

q

(1− q)

Figure 4. Single time step in the development of self-information, analogous to the
stock price development in option pricing.
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modelled by step size u (upward move, increase of the relative frequency) and
by the probability q of an increase. Correspondingly, a downward move can be
modelled by adding d. In line with [3], we assume u and d are chosen such that

d = −u . (7)

Thus, all possible developments of the frequency for a fixed number of time
steps form a lattice similar to the pricing lattice in Binomial Option Pricing. An
example lattice is displayed in Fig. 5.

rv

rv + 0u+ 8d with q0(1− q)8

rv + 1u+ 7d with q1(1− q)7

rv + 2u+ 6d with q2(1− q)6

rv + 3u+ 5d with q3(1− q)5

rv + 4u+ 4d with q4(1− q)4

rv + 5u+ 3d with q5(1− q)3

rv + 6u+ 2d with q6(1− q)2

rv + 7u+ 1d with q7(1− q)1

rv + 8u+ 0d with q8(1− q)0

Figure 5. Population model: discrete binomial stochastic process (random walk). The
diagram shows all possible result states for the development of the relative frequency of
an attribute value, starting with rv, and their probabilities after eight time steps.

Even though this model is pretty simple, we can represent almost all devel-
opments of the frequency as long as we are able to choose the time steps small
enough. A stagnation, for instance, can be represented by alternating up and
down movements. Linear upward or downward trends of arbitrary strength can be
modelled intuitively by combining upward or downward movements, respectively,
with stagnation.

However, a direct analogy between stock price and frequency development
is not fully adequate, since stock prices could increase without upper bound,
but the relative frequency is defined only between zero and one. One way of
dealing with the bounds would be forcing the next step of the random walk in a
fixed direction, if the other direction led beyond a bound. This would simulate
a stagnation at the margins of the domain. However, the approach has several
drawbacks. For instance, once the upper bound is reached, any number of further
upward movements would have exactly the same total effect as no further upward
movements at all. In order to avoid that, we propose to transform the bounded
domain of the relative frequency to an unbounded domain for the random walk.
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We have chosen the logit function for this transformation,

logit
(
x
)

= log x

1− x . (8)

After running the random walk in the logit-transformed domain, we transform
the value back to the frequency domain by means of the inverse logit function
logit−1,

logit−1(x) = ex

1 + ex . (9)

The transformation function and its inverse are depicted in Fig. 6. The trans-
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Figure 6. Logit transformation logit and inverse transformation logit−1.

formation to the unbounded domain allows us to rely on the same lattice nature
of the process as it is known from Binomial Option Pricing. After the logit trans-
formation, any number of movements in one direction is possible and exactly the
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same amount of movements in the other direction is necessary for compensation.
Independent of the number of upward or downward moves, the outcome will
remain within the bounds after the inverse transformation. Another nice property
of the logit transformation is that the absolute changes in the relative frequency
are the smaller the closer the level approaches the domain bounds. This captures
a kind of ‘base effect’ of very persistent individuals, who can be found in most
heterogeneous populations.

The economic value of an attribute value that will be exploited after T > 0
time steps can be computed by averaging the self-information over all possible
relative frequencies, weighted with their respected probability of occurrence
(right-hand side in Fig. 5). With Q(n) being the probability of n up moves,

Q(n) =
(
T

n

)
· qn(1− q)T−n , (10)

and r(n)
v being the relative frequency, taken from the result of the random walk

with n up moves,

r(n)
v = logit−1

[
logit

(
rv
)

+ nu+
(
T − n

)
d
]

= logit−1
[
logit

(
rv
)

+
(
2n− T

)
u
]
,

(11)

the expected self-information of the entire stochastic process after T steps is
Hv(T ):

Hv(T ) = −
T∑
n=0
Q(n) log2 r

(n)
v . (12)

By means of the expected self-information, it is possible to take time aspects
into account that are caused more generally by the society or the population,
respectively, rather than by the individual data subject. Knowledge about an
attribute value is the more valuable the higher the self-information of the attribute
value becomes in the future and thus the smaller its relative frequency becomes
in the population. Generalising one step, knowledge about an attribute is more
valuable the higher the entropy of the attribute is expected to grow (or remain)
in the future.

Fig. 7 shows the development of a downward trend in a lattice diagram.
Imagine an adversary who exploits technical attributes, such as browser or
operating system, of data subjects for re-identification. The parameters to be
plugged into the process could be estimated from the dynamics of the market
share of web browsers or operating systems in the population. The hypothetical
development shows a clear downward trend in the market share of one particular
browser, which had a dominant share before (rv = 0.7). The downward trend
might be due to data subjects switching to a competing alternative browser. The
fewer data subjects use the formerly dominant browser, the higher is the value of
the information that a specific data subject to be identified uses this particular
browser. Thus, the expected self-information increases over time. Assuming that
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sufficiently accurate parameters could be estimated from historical observations,
scaled down to a time step of one day, and predicted to remain valid for the
next 100 days, then we can continue the lattice shown in Fig. 7 in order to
calculate the expected self-information after 100 days. The development of the
self-information for that time period is shown in Fig. 8.

Similarly, a browser or an operating system which has previously been used
by a minority in the population (rv = 0.3) may quickly become popular (q = 0.7).
And therefore, the attribute value soon applies to a majority in the population.
Thus, the expected self-information of that attribute value will decrease over time.
We have outlined the first five steps in a lattice again, see Fig. 9, and continued
the next 180 days of the expected self-information in a diagram, see Fig. 10.

5 Valuation of Privacy Options

The main observation underlying our notion of privacy options is that disclosure
of personal data and its exploitation does often not take place at the same point
in time. In the previous section, we have argued that two sources of uncertainty
drive the valuation of privacy options, and both can be modelled as independent
stochastic processes. Now we will show how to combine the processes on the micro
and macro level to obtain an inter-temporal measure of the value of personal
data disclosure.

It is intuitively clear that the value of personal data (for re-identification of
the corresponding data subject) depends on the self-information at the time of
exploitation. The value is the lower, the lower the probability of a link between
the data (i. e., attribute value) and the data subject is at that time. Thus, the
probability of the link, modelled by Equation (2) of the micro model, discounts
the value of the (European) privacy option VEu(T ) at time T ,

VEu(T ) = x1(T ) · Hv(T ) . (13)

Recall for Equation (3) that x1(T ) denotes the first element of vector x(T ), which
holds the probability of a valid link.

The value of a privacy option depends on the parameters for the linkability
model, namely the probabilities p and p̄, and the parameters of the population
development, namely the current relative frequency rv of the disclosed attribute
value, the probability of an upward movement in the random walk q, the step
size u of an upward movement in the random walk, and the exercising time T of
the option. For example, consider an option with the parameters

p = 0.95 , p̄ = 1 ,
rv = 0.5 , q = 0.5 ,
u = 1.2 , T = 100 .

(14)

Observe in Fig. 11 that there is a substantial difference between the current
value of personal data, i. e., the attribute value, and its information value for
re-identification after several time steps. Further, it would be best to exercise the
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Figure 7. First five steps of the development of the self-information with an initial
relative frequency of the attribute value in the population rv = 0.7, the probability
of an increase q = 0.3, and the step size parameter u = 0.1. Each box represents a
possible intermediate step of the random walk, where f denotes the relative frequency, s
denotes the self-information, and p denotes the probability of that state. The expected
self-information Hv(·) after each time step is printed below each column of the lattice.
The trend of Hv(·) over a longer period of time is shown in Fig. 8.
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Figure 8. Trend development of the expected self-information Hv(·) for an attribute
value with the same parameters as in Fig. 7.
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Figure 9. First five steps of the development of the self-information. The notation is
the same as in Fig. 7 and also u = 0.1, but the initial relative frequency of the attribute
value in the population rv = 0.3 is smaller and the probability of an increase in the
relative frequency q = 0.7 is higher. The trend of Hv(·) over a longer period of time is
shown in Fig. 10.
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Figure 10. Trend development of the expected self-information Hv(·) for an attribute
value with the same parameters as in Fig. 9.
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privacy option after seven time steps. Before reaching the seventh time step, the
value of the option (solid red line) is dominated by the increasing self-information
of the attribute value (dotted green line). Afterwards, the value diminishes due
to the decreasing probability of a link between attribute value and data subject
(dashed blue line).
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Figure 11. Development of the privacy option value (solid red line) with unit bits. The
dashed blue line shows the corresponding probability of linkability with low probability
of a change of the attribute value (p = 0.95), but once the attribute value has been
changed, the previous linkable attribute value will never be recovered (p̄ = 1). The
dotted green line shows the development of the expected self-information of the attribute
value (in bits). The distribution of the attribute value is assumed to remain the same
(rv = 0.5, q = 0.5), but the dispersion is high (u = 1.2).

VEu(T ) is the value of the privacy option, if it is exploited in the ‘European’
style, that is, the option can only be exercised when it expires. By contrast,
American options can be exercised at any time between purchase and expiry.
For privacy options, this means that personal data can be exploited at any time
between disclosure and, for instance, the date of an obligation to erase the data.
On can even think of the data being exploited more than once in the period of
time. However, to allow for a better comparison, we normalise the valuation to
exactly one exploitation. Thus, the value of an American privacy option VAm(T )
is the average of the expected value at each point in time between data disclosure
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and expiry of the option,

VAm(T ) = 1
T

T∑
t=0
x1(t) · Hv(t) . (15)

If the attribute value is exploited several times between the attribute disclosure
and the expiry of the privacy option, say, k denotes the number of exploits, then
the value of the option is VAm(T ), multiplied by k. One can also consider a
weighted average to reflect a given prior on the possible time of exploitation.

6 Discussion of Results

A common assumption in privacy measurement is that personal data, once
disclosed, reduces the informational privacy of the data subject by its present self-
information. Implicitly, this implies that the present self-information of disclosed
data remain constant over time, at least until the data is exploited.

Our examples show that the present self-information of personal data is
only an appropriate measure for the information an adversary obtains when
exploiting the data, if the disclosure and the exploit take place instantaneously.
Otherwise, i. e., if time elapses between disclosure and exploit of personal data,
the self-information at present can lead to both over- and underestimation of the
‘true’ value of the information passed over to the adversary.

Table 1 summarises our findings by selected examples. It shows four privacy
options derived from examples of the previous sections and their valuation with
regard to expiry dates between 0 and 100. This corresponds to the situation
where an attribute value is disclosed now and exploited either at the expiry
date (column “future”) or sometimes between now and the expiry date (column
“present–future”). The resulting values of the privacy options, and thus the
expected self-information of the underlying attribute value, is compared to the
present self-information. Under- and overvaluations are indicated by arrows that
point up or down, respectively.

In general, we observe that (except for trivial cases) the probability of a link
between attribute value and data subject is less than certainty. Thus, the value of
personal data will be overvaluated by the present self-information, if the expected
self-information is constant or decreasing over time. Under-valuations only occur,
if an increasing expected self-information compensates the discount induced by
the probability of linkability. In Table 1, this is the case occurs for the first two
privacy options.

7 Conclusions and Outlook

In this paper, we have motivated why, and explained how, option pricing theory
can be useful for the valuation of informational privacy. In a first step towards
this direction, we have proposed a very simple model that highlights the main
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Table 1. Valuation of privacy options. Comparison of inter-temporal valuation with
the self-information of the attribute value at present.

assumptions valuation (in bits) over/
under-

valuation
indexa

stochastic process option point in time time range

linkability population dev. expiry date present futureb present–futurec

Fig. 1
(page 8)

Fig. 7
(page 15)

0 0.515
10 0.307 0.430 Ø/Ø

25 0.293 0.342 Ø/Ø

50 0.489 0.363 Ø/Ø

100 1.070 0.569 Ú/Ú

Fig. 3
(page 9)

Fig. 7
(page 15)

0 0.515
10 0.565 0.595 Ú/Ú

25 0.611 0.594 Ú/Ú

50 0.596 0.603 Ú/Ú

100 0.369 0.546 Ø/Ú

Fig. 1
(page 8)

Fig. 9
(page 16)

0 1.737
10 0.579 1.136 Ø/Ø

25 0.237 0.664 Ø/Ø

50 0.104 0.410 Ø/Ø

100 0.020 0.231 Ø/Ø

Fig. 3
(page 9)

Fig. 9
(page 16)

0 1.737
10 1.066 1.517 Ø/Ø

25 0.494 1.043 Ø/Ø

50 0.127 0.654 Ø/Ø

100 0.007 0.347 Ø/Ø

a Comparison between the present value, i. e., the present self-information of the
attribute value, and the privacy option value, i. e., the expected self-information at a
point in time, discounted by the probability of a link between attribute value and
data subject. “Ú” denotes that the present self-information underestimates the actual
value, whereas “Ø” denotes overestimation. The first arrow in this column refers to
the “future” value and the other to the “present-to-future” value.

b This corresponds to a European option, which can be exercised at the expiry date.
c This is the value of the privacy option, if it is exercised at exactly one point in time
between the date of disclosure and the expiry date. We assume that the point in
time is randomly drawn from a uniform distribution.
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features of our approach, namely the description of changes in each individual
data subject’s attribute values and the evolvement of the distribution of attribute
values in the population as two independent stochastic processes.

Once the realm of option pricing theory has been touched, possible extension
and refinements are abundant. Most notably, it would be interesting to allow
more than two attribute values in the state-space model, or to consider more than
one attribute. This would not only allow to use the valuation results as guidance
on which of a set of alternative attributes should be disclosed (given that the data
subject has a choice), but also to extract the self-information of combinations of
attributes over time. Another obvious next step is to replace the binomial process
with more appropriate processes. Ideally these processes should be validated
with and calibrated to empirical data, e. g., from longitudinal population surveys.
Replacing the discrete-time process with a continuous-time process could bring
our model closer to (variants of) the Black–Scholes [24] formula, which promise
closed-form solutions. This avoids computational effort when the number of time
steps grows large (though at the price of additional assumptions). While the
analysis in this paper was strictly confined to expected values, one could also
calculate and interpret other summary measures of the distribution functions over
time. In particular small quantiles could be interesting to study (un)linkability
with a security or risk management mindset by regarding the ε-worst case.

But there is more than just tweaks in the proposed framework: implementing
true and conscious control of personal data in everyday social interactions is
generally difficult. The fact that more and more social interactions happen in the
digital sphere aggravates this problem substantially. Following in Baran’s [43]
footsteps, visions of comprehensive privacy-enhancing technologies (PET) have
been conceived. Their idea is to cure the problems created by technology with
more technology. So-called privacy-enhanced identity management is envisaged to
assist people on deciding if, when, which, and at what price personal data should
be disclosed [1]. As with every decision support system, this implies that several
alternatives have to be evaluated and compared more or less automatically. And
since most interactions do have consequences for the future, this evaluation would
be incomplete if it does not consider time [44]. So privacy-enhancing technologies
are an obvious field of application for our framework.

Existing blueprints for such PETs use so-called privacy policies to define
how personal data should be handled (although enforcement of policies against
strong adversaries is largely unsolved). Ideally, privacy policies are formulated in
formal languages, which should support complex enough semantics to capture
all relevant aspects of personal data disclosure—including time. Interestingly, a
similar problem exists for modern financial contracts: nested derivatives quickly
create a complexity in semantics that is manually intractable. The solution,
again, lies in the intersection between finance and computer science. For example,
Peyton Jones [45, 46] has proposed domain-specific languages to model complex
financial constructs and enable their valuation over time. This can be seen as
a generalisation of classical option pricing theory. An interesting direction for
future research is to adapt this to privacy policies and develop a formal language
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that can express aspects of time, and thereby generalise the valuation framework
presented here.

Beyond direct applications in informational privacy protection through data
avoidance, measuring the inter-temporal value of attribute values for linkability
could also be useful in other contexts, even with opposite sign. It is conceivable
that the data subject seeks to disclose as much information as possible to ensure
clear identification in the future. This perspective will most likely matter when
communicating bandwidth for attribute values is a scarce resource (e. g., through
a hidden channel) and one must select those attributes which will be most
informative later on. Moreover, although the exposition in this paper was framed
from the data subjects’ perspective and targeted to protecting their personal
data, the very same underlying ideas and valuation methods can also be useful
for businesses to estimate the value of their customer databases. This is generally
considered a hard task due to the intangible nature of personal data, so a new
perspective might stimulate further advances.

To conclude, although the idea of valuating privacy with option pricing theory
sounds intriguing on paper, we have to recall that this framework is in no way
a panacea. Many obstacles ignored in this exposition are likely to remain as
serious limitations in practice: complexity, measurement problems, heterogeneous
preferences, model mismatch, and bounded rationality, among others.
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List of Symbols

General Symbols

v attribute value
t discrete point in time
T total number of time steps
VEu(T ) value of a European privacy option at time T
VAm(T ) value of a American privacy option at time T

Timed Linkability Process (Micro Model)

p probability of an attribute which is currently linkable to a data
subject to remain linkable in the next time step

p̄ probability of an attribute which is currently not linkable to a
data subject not to become linkable in the next time step

x(T ) state vector in the state-space model at time T
x1(T ) probability of a valid link between disclosed attribute value and

data subject after T time steps
A state transition matrix of the state-space model

Population Development (Macro Model)

rv relative frequency of attribute value v in the population
Hv self-information of attribute value v
q probability of an upward move in the random walk
u step size of an upward move in the random walk
d step size of an downward move with d = −u
Q(n) probability of n upward moves in T moves in total
r

(n)
v relative frequency of attribute value v after randomly walking

through T time steps of which n are upward moves
Hv(T ) expected self-information of attribute value v after T time steps
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